Skip to main content

Advertisement

Log in

The Use of Stem Cells’ Hematopoietic Stimulating Factors Therapy Following Spinal Cord Injury

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) remains one of the most devestating conditions in medicine, particularily due to the loss of productive life years and the high economic burden it places on our society. There are limited therapeutic options available to reduce the morbidity and mortality related to SCI. However, recent work with stem cells in repairing SCI appears to be promising, making this one of the most exciting frontiers in medicine.

A brief review of the mechanisms of SCI is presented. Stem cells from a variety of sources have shown effectiveness in improving motor function after SCI in animals. The pre-clinical use of stem cells in SCI and methods of delivery are discussed. The potential use of granulocyte-colony stimulating factor (G-CSF) to increase the number of stem cells engrafting at the site of injury in order to improve neurological and motor function recovery following SCI is introduced.

G-CSF, through stimulation of lymphohemopoietic stem cells in peripheral blood, can potentially cause repopulation of the SCI region with neural progenitor cells. This allows for improved functional outcomes. More pre-clinical and translational research exploring this possibility is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Akiyama Y., Radtke C., Honmou O., et al. 2002 Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39:229–236

    Article  PubMed  Google Scholar 

  2. Begley C. G., Lopez A. F., Nicola N. A., et al. 1986 Purified colony-stimulating factors enhance the survival of human neutrophils and eosinophils in vitro: a rapid and sensitive microassay for colony-stimulating factors. Blood 68:162–166

    PubMed  CAS  Google Scholar 

  3. Begley C. G., Metcalf D., Nicola N. A. 1987 Purified colony stimulating factors (g-csf and gm-csf) induce differentiation in human hl60 leukemic cells with suppression of clonogenicity. Int. J. Cancer. 39:99–105

    Article  PubMed  CAS  Google Scholar 

  4. Bianco P., Gehron Robey P. 2000 Marrow stromal stem cells. J. Clin. Invest. 105:1663–1668

    PubMed  CAS  Google Scholar 

  5. Bjorklund A., Svendsen C. 1999 Stem cells. Breaking the brain–blood barrier. Nature 397:569–570

    Article  PubMed  CAS  Google Scholar 

  6. Blesch A., Lu P., Tuszynski M. H. 2002 Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Res. Bull. 57:833–838

    Article  PubMed  CAS  Google Scholar 

  7. Bodine D. M., Seidel N. E., Orlic D. 1996 Bone marrow collected 14 days after in vivo administration of granulocyte colony-stimulating factor and stem cell factor to mice has 10-fold more repopulating ability than untreated bone marrow. Blood 88:89–97

    PubMed  CAS  Google Scholar 

  8. Bouhy, D. Delayed injection of gm-csf improves functional recovery and promotes axonal regeneration after spinal cord injury. 56th Annual Meeting of American Academy of Neurology, 2004; Suppl 5: A458

  9. Bouhy D., Malgrange B., Multon S., et al. (2006) Delayed gm-csf treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased bdnf expression by endogenous macrophages. FASEB J. 20: 1239–1241

    Article  PubMed  CAS  Google Scholar 

  10. Burgess A. W., Metcalf D. 1980 The nature and action of granulocyte-macrophage colony stimulating factors. Blood 56:947–958

    PubMed  CAS  Google Scholar 

  11. Byrne J. L., Russell N. H. 1998 Peripheral blood stem cell transplants. J. Clin. Pathol. 51:351–355

    PubMed  CAS  Google Scholar 

  12. Campos L., Ambron R. T., Martin J. H. 2004 Bridge over troubled waters. Neuroreporting 15:2691–2694

    Google Scholar 

  13. Cao Q. L., Zhang Y. P., Howard R. M., et al. 2001 Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp. Neurol. 167:48–58

    Article  PubMed  CAS  Google Scholar 

  14. Chapman B. 1999 Transplanting hematopoietic progenitor cells. CAP Today 13:48, 52–56, 58

    Google Scholar 

  15. Chen J., Li Y., Wang L., et al. 2001 Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011

    PubMed  CAS  Google Scholar 

  16. Chopp M., Zhang X. H., Li Y., et al. 2000 Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreporting 11:3001–3005

    Article  CAS  Google Scholar 

  17. Chow S. Y., Moul J., Tobias C. A., et al. 2000 Characterization and intraspinal grafting of egf/bfgf-dependent neurospheres derived from embryonic rat spinal cord. Brain Res. 874:87–106

    Article  PubMed  CAS  Google Scholar 

  18. Corti S., Locatelli F., Donadoni C., et al. 2002 Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia. J. Neurosci. Res. 70:721–733

    Article  PubMed  CAS  Google Scholar 

  19. Corti S., Locatelli F., Strazzer S., et al. 2002 Modulated generation of neuronal cells from bone marrow by expansion and mobilization of circulating stem cells with in vivo cytokine treatment. Exp. Neurol. 177:443–452

    Article  PubMed  CAS  Google Scholar 

  20. Demetri G. D., Griffin J. D. 1991 Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808

    PubMed  CAS  Google Scholar 

  21. Eglitis M. A., Dawson D., Park K. W., et al. 1999 Targeting of marrow-derived astrocytes to the ischemic brain. Neuroreporting 10:1289–1292

    Article  CAS  Google Scholar 

  22. Elfenbein G. J., Sackstein R., Oblon D. J. 2004 Do g-csf mobilized, peripheral blood-derived stem cells from healthy, hla-identical donors really engraft more rapidly than do g-csf primed, bone marrow-derived stem cells? No! Blood Cells Mol. Dis. 32:106–111

    Article  PubMed  CAS  Google Scholar 

  23. Evans R., Wilberger J. 2003 Traumatic Disorders. Philedelphia: Elsevier Science

    Google Scholar 

  24. Faulkner J. R., Herrmann J. E., Woo M. J., et al. 2004 Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24:2143–2155

    Article  PubMed  CAS  Google Scholar 

  25. Frampton J. E., Lee C. R., Faulds D. 1994 Filgrastim. A review of its pharmacological properties and therapeutic efficacy in neutropenia. Drugs 48:731–760

    PubMed  CAS  Google Scholar 

  26. Fujiwara Y., Tanaka N., Ishida O., et al. 2004 Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neurosci. Lett. 366:287–291

    Article  PubMed  CAS  Google Scholar 

  27. Gazitt Y. 2002 Comparison between granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in the mobilization of peripheral blood stem cells. Curr. Opin. Hematol. 9:190–198

    Article  PubMed  Google Scholar 

  28. Gussoni E., Soneoka Y., Strickland C. D., et al. 1999 Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    PubMed  CAS  Google Scholar 

  29. Ha Y., Kim Y. S., Cho J. M., et al. 2005 Role of granulocyte-macrophage colony-stimulating factor i preventing apoptosis and improving functional outcome in experimental spinal cord contusion injury. J. Neurosurg. Spine 2:55–61

    Article  PubMed  Google Scholar 

  30. Hartung T. 1998 Anti-inflammatory effects of granulocyte colony-stimulating factor. Curr. Opin. Hemat. 5:221–225

    Article  CAS  Google Scholar 

  31. Hofstetter C. P., Schwarz E. J., Hess D., et al. (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. USA 99:2199–2204

    Article  PubMed  CAS  Google Scholar 

  32. Hornig C. R., Busse O., Buettner T., et al. 1985 Ct contrast enhancement on brain scans and blood-csf barrier disturbances in cerebral ischemic infarction. Stroke 16:268–273

    PubMed  CAS  Google Scholar 

  33. Koda M., Nishio Y., Kamada T., et al. 2007 Granulocyte colony-stimulating factor (g-csf) mobilizes bone marrow-derived cells into injured spinal cord and promotes functional recovery after compression-induced spinal cord injury in mice. Brain Res. 1149:223–231

    Article  PubMed  CAS  Google Scholar 

  34. Koda M., Okada S., Nakayama T., et al. 2005 Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice. Neuroreporting 16:1763–1767

    Article  Google Scholar 

  35. Konishi Y., Chui D. H., Hirose H., et al. 1993 Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res. 609:29–35

    Article  PubMed  CAS  Google Scholar 

  36. Koshizuka S., Okada S., Okawa A., et al. 2004 Transplanted hematopoietic stem cells from bone marrow differentiate into neural lineage cells and promote functional recovery after spinal cord injury in mice. J. Neuropathol. Exp. Neurol. 63:64–72

    PubMed  Google Scholar 

  37. Kwon B. K., Tetzlaff W., Grauer J. N., et al. 2004 Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 4:451–464

    Article  PubMed  Google Scholar 

  38. Lu P., Jones L. L., Snyder E. Y., et al. 2003 Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 181:115–129

    Article  PubMed  CAS  Google Scholar 

  39. Lu D., Mahmood A., Wang L., et al. 2001 Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreporting 12:559–563

    Article  CAS  Google Scholar 

  40. Lu C. Z., Xiao B. G. 2006 G-csf and neuroprotection: a therapeutic perspective in cerebral ischaemia. Biochem. Soc. Trans. 34:1327–1333

    Article  PubMed  CAS  Google Scholar 

  41. McDonald J. W., Liu X. Z., Qu Y., et al. 1999 Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5:1410–1412

    Article  PubMed  CAS  Google Scholar 

  42. McKay R. 1997 Stem cells in the central nervous system. Science 276:66–71

    Article  PubMed  CAS  Google Scholar 

  43. Mezey E., Chandross K. J. 2000 Bone marrow: a possible alternative source of cells in the adult nervous system. Eur. J. Pharmacol. 405:297–302

    Article  PubMed  CAS  Google Scholar 

  44. Mezey E., Chandross K. J., Harta G., et al. 2000 Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782

    Article  PubMed  CAS  Google Scholar 

  45. Moore M. A. 1999 “Turning brain into blood”—clinical applications of stem-cell research in neurobiology and hematology. N Engl. J. Med. 341:605–607

    Article  PubMed  CAS  Google Scholar 

  46. Nishio Y., Koda M., Kamada T., et al. 2006 The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J. Neurosurg. Spine 5:424–433

    PubMed  Google Scholar 

  47. Nobunaga A. I., Go B. K., Karunas R. B. 1999 Recent demographic and injury trends in people served by the model spinal cord injury care systems. Arch. Phys. Med. Rehabil. 80:1372–1382

    Article  PubMed  CAS  Google Scholar 

  48. Okano H. 2002 Stem cell biology of the central nervous system. J. Neurosci. Res. 69:698–707

    Article  PubMed  CAS  Google Scholar 

  49. Paraplegia A. S. O. 2000 Spinal cord injury: facts and figures at a glance. J. Spinal Cord Med. 23:153–155

    Google Scholar 

  50. Pfeifer K., Vroemen M., Blesch A., et al. 2004 Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury. Eur. J. Neurosci. 20:1695–1704

    Article  PubMed  Google Scholar 

  51. Pittenger M. F., Mackay A. M., Beck S. C., et al. 1999 Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  52. Radtke C., Akiyama Y., Brokaw J., et al. 2004 Remyelination of the nonhuman primate spinal cord by transplantation of h-transferase transgenic adult pig olfactory ensheathing cells. FASEB J. 18:335–337

    PubMed  CAS  Google Scholar 

  53. Russell N. H., McQuaker G., Stainer C., et al. 1998 Stem cell mobilisation in lymphoproliferative diseases. Bone Marrow Transplant. 22:935–940

    Article  PubMed  CAS  Google Scholar 

  54. Saporta S., Kim J. J., Willing A. E., et al. 2003 Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J. Hematother. Stem Cell Res. 12:271–278

    Article  PubMed  CAS  Google Scholar 

  55. Sasaki M., Honmou O., Akiyama Y., et al. 2001 Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia 35:26–34

    Article  PubMed  CAS  Google Scholar 

  56. Schabitz W. R., Kollmar R., Schwaninger M., et al. 2003 Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751

    Article  PubMed  CAS  Google Scholar 

  57. Schneider A., Kruger C., Steigleder T., et al. 2005 The hematopoietic factor g-csf is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J. Clin. Invest. 115:2083–2098

    Article  PubMed  CAS  Google Scholar 

  58. Sekhon L. H., Fehlings M. G. 2001 Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26:S2–S12

    Article  PubMed  CAS  Google Scholar 

  59. Setoguchi T., Nakashima K., Takizawa T., et al. 2004 Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express bmp inhibitor. Exp. Neurol. 189:33–44

    Article  PubMed  CAS  Google Scholar 

  60. Shamblott M. J., Axelman J., Littlefield J. W., et al. 2001 Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc. Natl. Acad. Sci. USA 98:113–118

    Article  PubMed  CAS  Google Scholar 

  61. Sheridan W. P., Begley C. G., Juttner C. A., et al. 1992 Effect of peripheral-blood progenitor cells mobilised by filgrastim (g-csf) on platelet recovery after high-dose chemotherapy. Lancet 339:640–644

    Article  PubMed  CAS  Google Scholar 

  62. Shyu W. C., Lin S. Z., Lee C. C., et al. 2006 Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. Cmaj 174:927–933

    PubMed  Google Scholar 

  63. Sinden J. D., Stroemer P., Grigoryan G., et al. 2000 Functional repair with neural stem cells. Novartis Found. Symp. 231:270–283; discussion 283–278:302–276

    Article  PubMed  CAS  Google Scholar 

  64. Six I., Gasan G., Mura E., et al. 2003 Beneficial effect of pharmacological mobilization of bone marrow in experimental cerebral ischemia. Eur. J. Pharmacol. 458:327–328

    Article  PubMed  CAS  Google Scholar 

  65. Solaroglu I., Cahill J., Jadhav V., et al. 2006 A novel neuroprotectant granulocyte-colony stimulating factor. Stroke 37:1123–1128

    Article  PubMed  CAS  Google Scholar 

  66. Solter D., Gearhart J. 1999 Putting stem cells to work. Science 283:1468–1470

    Article  PubMed  CAS  Google Scholar 

  67. Takahashi T., Kalka C., Masuda H., et al. 1999 Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med. 5:434–438

    Article  PubMed  CAS  Google Scholar 

  68. Takeyama K., Ohto H. 2004 Pbsc mobilization. Transfus. Apheresis Sci. 31:233–243

    Article  Google Scholar 

  69. Thomson J. A., Itskovitz-Eldor J., Shapiro S. S., et al. 1998 Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  70. Urdzikova L., Jendelova P., Glogarova K., et al. 2006 Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J. Neurotrauma. 23:1379–1391

    Article  PubMed  Google Scholar 

  71. Veizovic T., Beech J. S., Stroemer R. P., et al. 2001 Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke 32:1012–1019

    PubMed  CAS  Google Scholar 

  72. Vroemen M., Aigner L., Winkler J., et al. 2003 Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur. J. Neurosci. 18:743–751

    Article  PubMed  Google Scholar 

  73. Willing A. E., Vendrame M., Mallery J., et al. 2003 Mobilized peripheral blood cells administered intravenously produce functional recovery in stroke. Cell Transplant. 12:449–454

    PubMed  Google Scholar 

Download references

Acknowledgments

This work, by part, was supported by a grant from F. M. Kirby Foundation. The authors would like to thank Tamara Berezina, MD, PhD, for her help with preparing the histological samples and Marjan Asadollahi, MD, and Trevor Baybutt, BS, for their help with preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin A. Divani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divani, A.A., Hussain, M.S., Magal, E. et al. The Use of Stem Cells’ Hematopoietic Stimulating Factors Therapy Following Spinal Cord Injury. Ann Biomed Eng 35, 1647–1656 (2007). https://doi.org/10.1007/s10439-007-9359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9359-x

Keywords

Navigation