Skip to main content

Advertisement

Log in

A Numerical Model to Study the Interaction of Vascular Stents with Human Atherosclerotic Lesions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A methodology is proposed that identifies optimal stent devices for specific clinical criteria. It enables to predict the effect of stent designs on the mechanical environment of stenotic arteries. In particular, we present a numerical study which is based on the interaction of a vascular stent with a patient-specific, atherosclerotic human iliac lesion of type V. The stress evolution in four different tissue components during and after stenting is investigated. The geometric model of the artery is obtained through MRI, while anisotropic material models are applied to describe the behavior of tissues at finite strains. In order to model the observed fissuring and dissection of the plaque under dilation, the undeformed configuration of the arterial wall incorporates two initial tears. The 3D balloon-stent-artery interaction problem is modeled by means of a contact algorithm, which is based on a C 2-continuous surface parametrization, hence avoiding numerical instabilities of standard facet-based techniques. In the simulations three different stent designs are studied. The performance of each stent is characterized by scalar quantities relating to stress changes in the artery, contact forces, and changes in lumen area after stenting. The study concludes by suggesting two optimal stent designs for two different clinically relevant parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abè H., Hayashi K., Sato M. (eds) (1996) Data Book on Mechanical Properties of Living Cells, Tissues, and Organs. Springer-Verlag, New York

    Google Scholar 

  2. Auer M., Stollberger R., Regitnig P., Ebner F., Holzapfel G. A. (2006) 3-D reconstruction of tissue components for atherosclerotic human arteries based on high-resolution MRI. IEEE T. Med. Imaging 25:345–357

    Article  PubMed  Google Scholar 

  3. Bedoya J., Meyer C. A., Timmins L. H., Moreno M. R., Moore J. E. (2006) Effects of stent design parameters on normal artery wall mechanics. J. Biomech. Eng. 128:757–765

    Article  PubMed  Google Scholar 

  4. Burton H. M., Hunter W. L. (2006) Drug-eluting stents: A multidisciplinary success story. Adv. Drug Deliv. Rev. 58:350–357

    Article  CAS  Google Scholar 

  5. W. R. Castaneda-Zuniga, Formanek A., Tadavarthy M., Vlodaver Z., Edwards J. E., Zollikofer C., Amplatz K. (1980) The mechanism of balloon angioplasty. Radiology 135:565–571

    PubMed  CAS  Google Scholar 

  6. Fattori R., Piva T. (2003) Drug-eluting stents in vascular intervention. Lancet 361:247–249

    Article  PubMed  Google Scholar 

  7. Gasser, T. C., and G. A. Holzapfel. Physical and numerical modeling of dissection propagation in arteries caused by balloon angioplasty. In: Proceedings of the 3rd IASTED International Conference on Biomechanics, edited by M. H. Hamza. Anaheim: ACTA Press, 2005, pp. 229–233.

  8. Gasser, T. C., and G. A. Holzapfel. Modeling plaque fissuring and dissection during balloon angioplasty intervention. Ann. Biomed. Eng. 35:711–723, 2007

    Article  PubMed  Google Scholar 

  9. Hoher M., Wohrle J., Grebe O. C., Kochs M., Osterhues H. H., Hombach V., Buchwald A. B. (1999) A randomized trial of elective stenting after balloon recanalization of chronic total occlusions. J. Am. Coll. Cardiol. 34:722–729

    Article  PubMed  CAS  Google Scholar 

  10. Holzapfel G. A. (2000) Nonlinear Solid Mechanics. A Continuum Approach for Engineering. John Wiley & Sons, Chichester

    Google Scholar 

  11. Holzapfel G. A. (2006) Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238:290–302

    PubMed  Google Scholar 

  12. Holzapfel G. A., Gasser T. C., Ogden R. W. (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48

    Article  Google Scholar 

  13. Holzapfel, G. A., C. A. J. Schulze-Bauer, and M. Stadler. Mechanics of angioplasty: Wall, balloon and stent. In: Mechanics in Biology, edited by J. Casey and G. Bao. New York: The American Society of Mechanical Engineers (ASME) AMD-Vol 242/BED-Vol 46, 2000, pp. 141–156

  14. Holzapfel G. A., Sommer G., Gasser C. T., Regitnig P. (2005) Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–2058

    Article  PubMed  CAS  Google Scholar 

  15. Holzapfel G. A., Sommer G., Regitnig P. (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665

    Article  PubMed  Google Scholar 

  16. Holzapfel G. A., Stadler M., Gasser T. C. (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: Computational assessment of parametric stent design. J. Biomech. Eng. 127:166–180

    Article  PubMed  Google Scholar 

  17. Holzapfel G. A., Stadler M., Schulze-Bauer C. A. J. (2002) A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng. 30:753–767

    Article  PubMed  Google Scholar 

  18. Humphrey J. D. (2002) Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. Springer-Verlag, New York

    Google Scholar 

  19. Ibrahimbegovic A., Al Mikdad M. (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int. J. Numer. Meth. Eng. 66:781–814

    Article  Google Scholar 

  20. Jang I.-K., Tearney G., Bouma B. (2001) Visualization of tissue prolapse between coronary stent struts by optical coherence tomography. Comparison with intravascular ultrasound. Circulation 104:2754

    Article  PubMed  CAS  Google Scholar 

  21. Kastrati A., Mehilli J., Dirschinger J., Dotzer F., Schühlen H., Neumann F.-J., Fleckenstein M., Pfafferott C., Seyfarth M., Schömig A. (2001) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103:2816–2821

    PubMed  CAS  Google Scholar 

  22. Kiousis, D. E., T. C. Gasser, and G. A. Holzapfel. Smooth contact strategies with emphasis on the modeling of balloon angioplasty with stenting. submitted.

  23. König A., Schiele T. M., Rieber J., Theisen K., Mudra H., Klauss V. (2002) Influence of stent design and deployment technique on neointima formation and vascular remodeling. Z. Kardiol. 91:98–102

    Article  PubMed  Google Scholar 

  24. Korelc J. (1997) Automatic generation of finite-element code by simultaneous optimization of expressions. Theor. Comput. Sci. 187:231–248

    Article  Google Scholar 

  25. Lally C., Dolan F., Prendergast P. J. (2005) Cardiovascular stent design and vessel stresses: A finite element analysis. J. Biomech. 38:1574–1581

    Article  PubMed  CAS  Google Scholar 

  26. Laursen T. A. (2002) Computational Contact and Impact Mechanics. Springer-Verlag, Berlin

    Google Scholar 

  27. Lee R. T., Loree H. M., Cheng G. C., Lieberman E. H., Jaramillo N., Schoen F. J. (1993) Computational structural analysis based on intravascular ultrasound imaging before in vitro angioplasty: Prediction of plaque fracture locations. J. Am. Coll. Cardiol. 21:777–782

    Article  PubMed  CAS  Google Scholar 

  28. Liang, D. K., D. Z. Yang, M. Qi, and W. Q. Wang. Finite element analysis of the implementation of a balloon expandable stent in a stenosed artery. Int. J. Cardiol. 104:314–318, 2005

    Google Scholar 

  29. Lyon R. T., Zarins C. K., Lu C. T., Yang C. F., Glagov S. (1987) Vessel, plaque and lumen morphology after transluminal balloon angioplasty Quantitative study in distended human arteries. Arteriosclerosis 7:306–314

    PubMed  CAS  Google Scholar 

  30. Migliavacca F., Petrini L., Massarotti P., Schievano S., Auricchio F., Dubini G. (2004) Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech. Model. Mechanobiol. 2:205–217

    Article  PubMed  Google Scholar 

  31. Pache J., Kastrati A., Mehilli J., Schühlen H., Dotzer F., Hausleiter J., Fleckenstein M., Neumann F. J., Sattelberger U., Schmitt C., Muller M., Dirschinger J., Schömig A. (2003) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J. Am. Coll. Cardiol. 41:1283–1288

    Article  PubMed  Google Scholar 

  32. Piegel L. A., Tiller W. (1997) The NURBS Book 2nd edition. Springer-Verlag, New York

    Google Scholar 

  33. Schulze-Bauer C. A. J., Mörth C., Holzapfel G. A. (2003) Passive biaxial mechanical response of aged human iliac arteries. J. Biomech. Eng. 125:395–406

    Article  PubMed  Google Scholar 

  34. Schulze-Bauer C. A. J., Regitnig P., Holzapfel G. A. (2002) Mechanics of the human femoral adventitia including high-pressure response. Am. J. Physiol. Heart Circ. Physiol. 282:H2427–H2440

    PubMed  CAS  Google Scholar 

  35. Schwartz R. S., Henry T. D. (2002) Pathophysiology of coronary artery restenosis. Rev. Cardiovasc. Med. 3(Suppl. 5):S4–S9

    PubMed  Google Scholar 

  36. Serruys P. W., de Jaegere P., Kiemeneij F., Macaya C., Rutsch W., Heyndrickx G., Emanuelsson H., Marco J., Legrand V., Materne P., Belardi J., Sijwart U., Colombo A., Goy J., van den Heuvel P., Delcan J., Morel M. (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease Benestent Study Group. N. Engl. J. Med. 331:489–495

    Article  PubMed  CAS  Google Scholar 

  37. Stary H. C. (1999) An Atlas of Atherosclerosis Progression and Regression. Parthenon, New York

    Google Scholar 

  38. Stolpmann, J., H. Brauer, H.-J. Stracke, R. Erbel, and A. Fischer. Practicability and limitations of finite element simulation of the dilation behaviour of coronary stents. Mat.-wiss. u. Werkstofftechn. 34:736–745, 2003

    Article  CAS  Google Scholar 

  39. Taber L. A. (1995) Biomechanics of growth, remodelling, and morphognesis. Appl. Mech. Rev. 48:487–543

    Article  Google Scholar 

  40. Taylor, R. L. FEAP – A Finite Element Analysis Program, Version 7.5 User Manual. Berkeley, California: University of California at Berkeley, 2005.

  41. CUBIT Team. CUBIT 10.0 User’s Manual. Albuquerque, New Mexico, USA: Sandia National Laboratories, 2005

  42. Wang D. L., Wung B. S., Shyy Y. J., Lin C. F., Chao Y. J., Usami S., Chien S. (1995) Mechanical strain induces monocyte chemotactic protein-1 gene expression in endothelial cells Effects of mechanical strain on monocyte adhesion to endothelial cells. Circ. Res. 77:294–302

    PubMed  CAS  Google Scholar 

  43. Weizsäcker H. W., Pinto J. G. (1988) Isotropy and anisotropy of the arterial wall. J. Biomech. 21:477–487

    Article  PubMed  Google Scholar 

  44. Wentzel J. J., Kloet J., Andhyiswara I., Oomen J. A., Schuurbiers J. C., de Semet B. J., Post M. J., de Kleijn D., Paterkamp G., Borst C., Slager C. J., Krams R. (2001) Shear-stress and wall-stress regulation of vascular remodeling after balloon angioplasty: effect of matrix metalloproteinase inhibition. Circulation 104:91–96

    PubMed  CAS  Google Scholar 

  45. Wolfram Research Inc. Mathematica 5.2. Champaign, Illinois: Wolfram Research, Inc., 2005.

  46. Wriggers P. (2002) Computational Contact Mechanics. John Wiley & Sons, Chichester

    Google Scholar 

  47. Wriggers P., Krstulovic-Opara L., Korelc J. (2001) Smooth C 1-interpolations for two-dimensional frictional contact problems. Int. J. Numer. Meth. Eng. 51:1469–1495

    Article  Google Scholar 

  48. Zhou J., Fung Y. C. (1997) The degree of nonlinearity and anisotropy of blood vessel elasticity. Proc. Natl. Acad. Sci. USA 94:14255–14260

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Martin Auer and Alexander Wulff for their involvements in providing the geometrical models of the artery and the stent, respectively. The support from Boston Scientific Sverige AB providing the Express Vascular LD TM (Boston Scientific) stents is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard A. Holzapfel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiousis, D., Gasser, T. & Holzapfel, G. A Numerical Model to Study the Interaction of Vascular Stents with Human Atherosclerotic Lesions. Ann Biomed Eng 35, 1857–1869 (2007). https://doi.org/10.1007/s10439-007-9357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9357-z

Keywords

Navigation