Skip to main content

Advertisement

Log in

Mathematical Modeling of Guided Neurite Extension in an Engineered Conduit with Multiple Concentration Gradients of Nerve Growth Factor (NGF)

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Neurotrophic factors such as nerve growth factor (NGF) provide essential cues to navigate growing axon toward their targets. Concentration and concentration gradient of NGF are key parameters affecting the growth rate and direction of neurites and axons. However, the maximum distance for guided nerve growth under stimulation of a single concentration gradient is limited and is thus unfavorable in nerve regeneration. Since the sensitivity of PC12 cells to NGF signals is restorable even after brief removal of the factors, exposure to multiple concentration gradients of the factor can achieve longer distances and greater rates of guided growth. In this study, a mathematical model simulating nerve growth in a virtually constructed nerve conduit incorporating multiple NGF concentration gradients is established. Using a genetic algorithm, optimized initial profiles of NGF able to achieve 4.5 cm of guided growth with a significantly improved growth rate has been obtained. The model also predicts an inverse relationship between the diffusion coefficient of the factor and the neurite growth rate. This model provides a useful tool for evaluating various conduit designs before fabrication and evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Aletta J. M., L. A. Greene (1988) Growth cone configuration and advance: a time-lapse study using video-enhanced differential interference contrast microscopy. J. Neurosci. 8, 1425–1435

    PubMed  CAS  Google Scholar 

  2. Barde Y. A. (1989) Trophic factors and neuronal survival. Neuron 2(6), 1525–1534

    Article  PubMed  CAS  Google Scholar 

  3. Battiston B., S. Geuna, M. Ferrero, P. Tos (2005) Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery 25(4), 258–267

    Article  PubMed  Google Scholar 

  4. Bender M. D., J. M. Bennett, R. L. Waddell, J. S. Doctor, K. G. Marra (2004) Multi-channeled biodegradable polymer/CultiSpher composite nerve guides. Biomaterials 25(7–8), 1269–1278

    Article  PubMed  CAS  Google Scholar 

  5. Cao X., M. S. Shoichet (2001) Define the concentration gradient of nerve growth factor for guided neurite outgrowth. Neuroscience 103, 831–840

    Article  PubMed  CAS  Google Scholar 

  6. Capes J. S., H. Y. Ando, R. E. Cameron (2005) Fabrication of polymeric scaffolds with a controlled distribution of pores. J. Mater. Sci. Mater. Med. 16(12), 1069–1075

    Article  PubMed  CAS  Google Scholar 

  7. Chan B. P., T. Y. Hui, O. C. M. Chan, K. -F. So, W. Lu, K. M. C. Cheung, E. Salomatina, and A. Yaroslavsky. Photochemical cross-linking for collagen-based scaffolds: a study on optical properties, mechanical properties, stability, and hematocompatibility. Tissue Eng. 13(1):73–85, 2007

    Article  PubMed  CAS  Google Scholar 

  8. Chan B. P., K. F. So (2006) Modification of the physicochemical properties and microstructures of collagen scaffolds using photochemical crosslinking. Tissue Eng. 12(4), 1016–1017

    Google Scholar 

  9. Dickson B. J. (2002) Molecular mechanisms of axon guidance. Science 298(5600), 1959–1964

    Article  PubMed  CAS  Google Scholar 

  10. Greene L. A., A. S. Tischler (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U.S.A. 73(7), 2424–2428

    Article  PubMed  CAS  Google Scholar 

  11. Gulati A. K. (1988) Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve. J. Neurosurg. 68(1), 117–123

    PubMed  CAS  Google Scholar 

  12. Hellweg R., S. V. Richthofen, D. Anders, C. Baethge, S. Ropke, H. D. Hartung, C. A. Gericke (1998) The time course of nerve growth factor content in different neuropsychiatric disease—a unifying hypothesis. J. Neural Transm. 105, 871–903

    Article  PubMed  CAS  Google Scholar 

  13. Huber A. B., A. L. Kolodkin, D. D. Ginty, J. F. Cloutier (2003) Signaling at the growth cone: ligand–receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26, 509–563 Epub 2003 Mar 28

    Article  PubMed  CAS  Google Scholar 

  14. Hudson T. W., G. R. Evans, C. E. Schmidt (1999) Engineering strategies for peripheral nerve repair. Clin. Plast. Surg. 26(4), 617–628, ix

    PubMed  CAS  Google Scholar 

  15. Isacson O., T. W. Deacon (1996) Specific axon guidance factors persist in the adult brain as demonstrated by pig neuroblasts transplanted to the rat. Neuroscience 75(3), 827–837

    Article  PubMed  CAS  Google Scholar 

  16. Kapur T. A., M. S. Shoichet (2003) Chemically-bound nerve growth factor for neural tissue engineering applications. J. Biomater. Sci. Polym. Ed. 14(4), 383–394

    Article  PubMed  CAS  Google Scholar 

  17. Kapur T. A., M. S. Shoichet (2004) Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. J. Biomed. Mater. Res. A 68(2), 235–243

    Article  PubMed  CAS  Google Scholar 

  18. Labrador R. O., M. Buti, X. Navarro (1998) Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair. Exp. Neurol. 149(1), 243–252

    Article  PubMed  CAS  Google Scholar 

  19. Loeb D. M., L. A. Greene (1993) Transfection with trk restores “slow” NGF binding, efficient NGF uptake, and multiple NGF responses to NGF-nonresponsive PC12 cell mutants. J. Neurosci. 13(7), 2919–2929

    PubMed  CAS  Google Scholar 

  20. Lundborg G. (2000) A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J. Hand Surg. [Am] 25(3), 391–414

    CAS  Google Scholar 

  21. Mackinnon S. E., A. L. Dellon (1990) Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plast. Reconstr. Surg. 85(3), 419–424

    Article  PubMed  CAS  Google Scholar 

  22. Neet K. E., R. B. Campenot (2001) Receptor binding, internalization, and retrograde transport of neurotrophic factors. Cell. Mol. Life Sci. 58(8), 1021–1035

    Article  PubMed  CAS  Google Scholar 

  23. Oudega M., T. Hagg (1996) Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord. Exp. Neurol. 40(2), 218–229

    Article  Google Scholar 

  24. Pean J. M., M. C. Venier-Julienne, F. Boury, P. Menei, B. Denizot, J. P. Benoit (1998) NGF release from poly(D,L-lactide-co-glycolide) microspheres. Effect of some formulation parameters on encapsulated NGF stability. J. Control. Release 56(1–3), 175–187

    Article  PubMed  CAS  Google Scholar 

  25. Rosner B. I., R. A. Siegel, A. Grosberg, R. T. Tranquillo (2003) Rational design of contact guiding, neurotrophic matrices for peripheral nerve regeneration. Ann. Biomed. Eng. 31(11), 1383–1401

    Article  PubMed  CAS  Google Scholar 

  26. Rosoff W. J., J. S. Urbach, M. A. Esrick, R. G. McAllister, L. J. Richards, and G. J. Goodhill. A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nat. Neurosci. 7(6):678–682, 2004

    Article  PubMed  CAS  Google Scholar 

  27. Rovelli G., R. A. Heller, M. Canossa, E. M. Shooter (1993) Chimeric tumor necrosis factor-TrkA receptors reveal that ligand-dependent activation of the TrkA tyrosine kinase is sufficient for differentiation and survival of PC12 cells. Proc. Natl. Acad. Sci. U.S.A. 90(18), 8717–8721

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt C. E., J. B. Leach (2003) Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 5, 293–347

    Article  PubMed  CAS  Google Scholar 

  29. Shen H., J. M. Chung, R. E. Coggeshall, K. Chung (1999) Changes in trkA expression in the dorsal root ganglion after peripheral nerve injury. Exp. Brain Res. 127(2), 141–146

    Article  PubMed  CAS  Google Scholar 

  30. Sinha V. R., A. Trehan (2003) Biodegradable microspheres for protein delivery. J. Control. Release 90(3), 261–280

    Article  PubMed  CAS  Google Scholar 

  31. Stanec S., Z. Stanec (1998) Reconstruction of upper-extremity peripheral-nerve injuries with ePTFE conduits. J. Reconstr. Microsurg. 14(4), 227–232

    Article  PubMed  CAS  Google Scholar 

  32. Taras J. S., V. N. Nanavati, P. Steelman (2005) Nerve conduits. J. Hand Surg. 18, 191–197

    Google Scholar 

  33. Terenghi G. (1999) Peripheral nerve regeneration and neurotrophic factors. J. Anat. 194(Pt 1), 1–14

    Article  PubMed  CAS  Google Scholar 

  34. Terzis J., B. Faibisoff, B. Williams (1975) The nerve gap: suture under tension vs. graft. Plast. Reconstr. Surg. 56(2), 166–170

    Article  PubMed  CAS  Google Scholar 

  35. Yin Q., G. J. Kemp, S. P. Frostick (1998) Neurotrophins, neurones and peripheral nerve regeneration. J. Hand Surg. [Br] 23(4), 433–437

    Article  CAS  Google Scholar 

  36. Zapf-Colby A., J. M. Olefsky (1998) Nerve growth factor processing and trafficking events following TrkA-mediated endocytosis. Endocrinology 139(7), 3232–3240

    Article  PubMed  CAS  Google Scholar 

  37. Zhou J., J. S. Valletta, M. L. Grimes, W. C. Mobley (1995) Multiple levels for regulation of TrkA in PC12 cells by nerve growth factor. J. Neurochem. 65(3), 1146–1156

    Article  PubMed  CAS  Google Scholar 

  38. Zigmond S. H. (1981) Consequences of chemotactic peptide receptor modulation for leukocyte orientation. J. Cell. Biol. 88(3), 644–647

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr David Wilmshurst, the University of Hong Kong’s Technical Writer, for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lam.

Appendices

Appendix A

Figure 10 indicates the characteristics of the neurite outgrowth under optimal initial profiles of neurotrophic factor for gradient factor k = 30, 50, and 70 mL cm2 ng−1 h−1, respectively (refer to “Geometric Characteristics of Initial Profiles” section in Methodology for the meaning of optimal initial profile). It is found that neurite outgrowths share the same features under different gradient factors, i.e., rapid

Figure 10
figure 10

Regions A, B, and C represent rapid growth region, baseline growth region, and temporary stall region, respectively

growth region, baseline growth region, and temporary stall region (refer to Figs. 5a–5d for detail).

Appendix B

Flow chart for optimizing initial profile by genetic algorithm is shown in Fig. 11.  

Figure 11
figure 11

Flow chart for optimizing initial profile by genetic algorithm

Steps 1 to 6: Several initial profiles (individual solutions) are randomly generated to form initial population. The pre-defined fitness function are input in Steps 2 to 6 to calculate their fitness correspondingly. Fitness here is defined as the time consumed for neurite outgrowth for 5-cm conduit. A small fitness means a higher suitability of the initial profile for nerve reconnection.

Step 7: Compliance with criteria is checked. Generally speaking, criteria may include generation, time limit, fitness (suitability of the initial population), stall generation, and stall time limit. If the criteria are not fulfilled, the programme will continue to search for better initial profiles.

Step 8: The programme chooses some initial profile with better fitness from the new generation to prepare for the next new generation. A number of less fit profiles are also selected to maintain the diversity of each generation, preventing premature convergence on poor solutions.

Steps 9 to 10: The crossover and mutation mathematical processes (these terms occur in genetic algorithm 6, 7) are performed to obtain better initial profiles, after which a new population forms.

Steps 2 to 11 are repeated until the criteria are fulfilled. The programme is then terminated with a best initial profile in output.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tse, T.H.Z., Chan, B.P., Chan, C.M. et al. Mathematical Modeling of Guided Neurite Extension in an Engineered Conduit with Multiple Concentration Gradients of Nerve Growth Factor (NGF). Ann Biomed Eng 35, 1561–1572 (2007). https://doi.org/10.1007/s10439-007-9328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9328-4

Keywords

Navigation