Skip to main content
Log in

Modeling of Size Dependent Failure in Cardiovascular Stent Struts under Tension and Bending

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cardiovascular stents are cylindrical mesh-like metallic structures that are used to treat atherosclerosis. The thickness of stent struts are typically in the range of 50–150 μm. At this microscopic size scale, the tensile failure strain has been shown to be size dependent. Micromechanically representative computational models have captured this size effect in tension. In this paper polycrystalline models incorporating material fracture are used to investigate size effects for realistic stent strut geometries and loading modes. The specific loading a stent undergoes during deployment is uniquely captured and the implications for stent design are considered. Fracture analysis is also performed, identifying trends in terms of strut thickness and loading type. The results show, in addition to the size effect in tension, further size effects in different loading conditions. The results of the loading analyses are combined to produce a tension and bending failure graph. This design safety diagram is presented as a tool to predict failure of stent struts. This study is particularly significant given the current interest in producing smaller stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Auricchio F., Di Loreto M., Sacco E. (2001) Finite element analysis of a stenotic artery revascularization through a stent insertion. Comput. Meth. Biomech. Biomed. Eng. 4: 249–263

    Article  Google Scholar 

  2. Bajwa, T. K. Stent fractures in drug eluting era, fact or fiction? In: TCT. Washington, 2006

  3. Chung W. J., Cho J. W., Belytschko T. (1998) On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng. Comput. 15(6): 750–776

    Article  Google Scholar 

  4. Cuddy, H. Experimental analysis of the influence of size scale on the static mechanical properties of thin biomedical grade stainless steel wires and struts, M. Eng. Sc. Thesis. National University of Ireland, Galway, 2005

  5. Dao M., Li M. (2001) A micromechanics study on strain-localization-induced fracture initiation in bending using crystal plasticity models. Phil. Mag. A 81(8): 1997–2020

    Article  CAS  Google Scholar 

  6. Dumoulin C., Cochelin B. (2000) Mechanical behaviour modelling of balloon-expandable stents. J. Biomech. 33(11): 1461–1470

    Article  PubMed  CAS  Google Scholar 

  7. Espinosa H. D., Prorok B. C., Peng B. (2004) Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solid 52(3): 667–689

    Article  CAS  Google Scholar 

  8. Etave F., Finet G., Boivin M., Boyer J. C., Rioufol G., Thollet G. (2001) Mechanical properties of coronary stents determined by using finite element analysis. J. Biomech. 34(8): 1065–1075

    Article  PubMed  CAS  Google Scholar 

  9. Gao X., Faleskog J., Shih C. F. (1998) Cell model for nonlinear fracture analysis – II. Fracture process calibration and verification. Int. J. Frac. 89(4): 375–398

    Article  Google Scholar 

  10. Harewood F. J., McHugh P. E. (2006) Investigation of finite element mesh independence in rate dependent materials. Comput. Mater. Sci. 37(4): 442–453

    Article  CAS  Google Scholar 

  11. Harewood F. J., McHugh P. E. (2007) Comparison of the implicit and explicit finite element methods using crystal plasticity. Comput. Mater. Sci. 39(2): 481–494

    Article  CAS  Google Scholar 

  12. Hibbitt, Karlsson, and Sorenson. ABAQUS Theory Manual. Pawtucket, RI, USA, 1997

  13. Holzapfel G., Stadler M., Gasser T. C. (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127(1): 166–180

    Article  PubMed  Google Scholar 

  14. Huang, Y. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Harvard University Report, MECH 178, 1991

  15. Janovec J., Blach J., Zahumensky P., Magula V., Pecha J. (1999) Role of intergranular precipitation in the fracture behaviour of AISI 316 austenitic stainless steel. Can. Metall. Q 38(1): 53–59

    Article  CAS  Google Scholar 

  16. Kastrati A., Mehilli J., Dirschinger J., Dotzer F., Schuhlen H., Neumann F. J., Fleckenstein M., Pfafferott C., Seyfarth M., Schomig A. (2001) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103(23): 2816–2821

    PubMed  CAS  Google Scholar 

  17. Klein M., Hadrboletz A., Weiss B., Khatibi G. (2001) The ‘size effect’ on the stress–strain, fatigue and fracture properties of thin metallic foils. Mater. Sci. Eng. A 319–321: 924–928

    Google Scholar 

  18. Kutt L. M., Pifko A. B., Nardiello J. A., Papazian J. M. (1998) Slow-dynamic finite element simulation of manufacturing processes. Comput. Struct. 66(1): 1–17

    Article  Google Scholar 

  19. Lossef S. V., Lutz R. J., Mundorf J., Barth K. H. (1994) Comparison of mechanical deformation properties of metallic stents with use of stress–strain analysis. J. Vasc. Interv. Radiol. 5(2): 341–349

    Article  PubMed  CAS  Google Scholar 

  20. Mackay, J., and G. Mensah. Atlas of Heart Disease and Stroke. World Health Organisation, Geneva, p. 112, 2004

    Google Scholar 

  21. McGarry J. P., O’Donnell B. P., McHugh P. E., McGarry J. G. (2004) Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling. Comput. Mater. Sci. 31(3–4): 421–438

    Google Scholar 

  22. McGarry, J. P., B. P. O’Donnell, P. E. McHugh, E. O’Cearbhaill, and R. M. McMeeking. Computational examination of the effect of material inhomogeneity on the necking of stent struts under tensile loading. J. Appl. Mech., 2007 (in press)

  23. McHugh P. E., Connolly P. J. (2003) Micromechanical modelling of ductile crack growth in the binder phase of WC-Co. Comput. Mater. Sci. 27(4): 423–436

    Article  CAS  Google Scholar 

  24. Migliavacca F., Petrini L., Montanari V., Quagliana I., Auricchio F., Dubini G. (2005) A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med. Eng. Phys. 27: 13–18

    Article  PubMed  Google Scholar 

  25. Mishnaevsky J. L., Dong M., Honle S., Schmauder S. (1999) Computational mesomechanics of particle-reinforced composites. Comput. Mater. Sci. 16(1–4): 133–143

    Article  CAS  Google Scholar 

  26. Moller D., Reimers W., Pyzalla A., Fischer A. (2001) Residual stresses in coronary artery stents. J. Biomed. Mater. Res. 58(1): 69–74

    Article  PubMed  CAS  Google Scholar 

  27. Mori K., Saito T. (2005) Effects of stent structure on stent flexibility measurements. Ann. Biomed. Eng. 33(6): 733–742

    Article  PubMed  Google Scholar 

  28. Murphy B., Cuddy H., Harewood F., Connolley T., McHugh P. (2006) The influence of grain size on the ductility of micro-scale stainless steel stent struts. J. Mater. Sci. Mater. Med. 17(1): 1–6

    Article  PubMed  CAS  Google Scholar 

  29. Murphy B. P., Savage P., McHugh P. E., Quinn D. F. (2003) The stress–strain behavior of coronary stent struts is size dependent. Ann. Biomed. Eng. 31(6): 686–691

    Article  PubMed  CAS  Google Scholar 

  30. Ormiston J. A., Dixon S. R., Webster M. W., Ruygrok P. N., Stewart J. T., Minchington I., West T. (2000) Stent longitudinal flexibility: a comparison of 13 stent designs before and after balloon expansion. Catheter Cardiovasc. Interv. 50(1): 120–124

    Article  PubMed  CAS  Google Scholar 

  31. Pache J., Kastrati A., Mehilli J., Schuhlen H., Dotzer F., Hausleiter J., Fleckenstein M., Neumann F.-J., Sattelberger U., Schmitt C., Müller M., Dirschinger J., Schömig A. (2003) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J. Am. Coll. Cardiol. 41(8): 1283–1288

    Article  PubMed  Google Scholar 

  32. Peirce D., Asaro R., Needleman A. (1983) Material rate dependence and localised deformation in crystalline solids. Acta Metall. Mater. 31(12): 1951–1976

    Article  CAS  Google Scholar 

  33. Petrini L., Migliavacca F., Auricchio F., Dubini G. (2004) Numerical investigation of the intravascular coronary stent flexibility. J. Biomech. 37(4): 495–501

    Article  PubMed  Google Scholar 

  34. Rice J. R., Tracey D. M. (1969) On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 17: 201–217

    Article  Google Scholar 

  35. Rieu R., Barragan P., Masson C., Fuseri J., Garitey V., Silvestri M., Roquebert P., Sainsous J. (1999) Radial force of coronary stents: a comparative analysis. Catheter Cardiovasc. Interv. 46(3): 380–391

    Article  PubMed  CAS  Google Scholar 

  36. Rousselier G. (1987) Ductile fracture models and their potential in local approach of fracture. Nucl. Eng. Des. 105(1): 97–111

    Article  CAS  Google Scholar 

  37. Savage, P. Computational micromechanics modelling of the mechanical behaviour of cardiovascular stent struts, M. Eng. Sc. Thesis. NUI, Galway, 2004

  38. Savage P., O’Donnell B. P., McHugh P. E., Murphy B. P., Quinn D. F. (2004) Coronary stent strut size dependent stress–strain response investigated using micromechanical finite element models. Ann. Biomed. Eng. 32(2): 202–211

    Article  PubMed  CAS  Google Scholar 

  39. Serruys, P. W., and B. Rensing. Handbook of Coronary Stents. Martin Dunitz, London, p. 366, 2002

    Google Scholar 

  40. Sianos G., Hofma S., Ligthart J. M. R., Saia F., Hoye A., Lemos P. A., Serruys P. W. (2004) Stent fracture and restenosis in the drug-eluting stent era. Catheter Cardiovasc. Interv. 61(1): 111–116

    Article  PubMed  Google Scholar 

  41. Simons G., Weippert C., Dual J., Villain J. (2006) Size effects in tensile testing of thin cold rolled and annealed Cu foils. Mater. Sci. Eng. A 416(1–2): 290–299

    Google Scholar 

  42. Stölken J. S., Evans A. G. (1998) A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14): 5109–5115

    Article  Google Scholar 

  43. Sun J. S., Lee K. H., Lee H. P. (2000) Comparison of implicit and explicit finite element methods for dynamic problems. J. Mater. Process Tech. 105(1–2): 110–118

    Article  Google Scholar 

  44. Takebayashi H., Mintz G. S., Carlier S. G., Kobayashi Y., Fujii K., Yasuda T., Costa R. A., Moussa I., Dangas G. D., Mehran R., Lansky A. J., Kreps E., Collins M. B., Colombo A., Stone G. W., Leon M. B., Moses J. W. (2004) Nonuniform strut distribution correlates with more neointimal hyperplasia after sirolimus-eluting stent implantation. Circulation 110(22): 3430–3434

    Article  PubMed  CAS  Google Scholar 

  45. Wang W.-Q., Liang D.-K., Yang D.-Z., Qi M. (2006) Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J. Biomech. 39(1): 21–32

    Article  PubMed  Google Scholar 

  46. You, X., T. Connolley, J. P. McGarry, and P. E. McHugh. Manuscript in preparation, 2007

  47. Zhao L. G., O’Dowd N. P., Busso E. P. (2006) A coupled kenetic-constitutive approach to the study of high temperature crack initiation in single-crystal nickel-base superalloys. J. Mech. Phys. Solids 54: 288–309

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge funding from Embark, Irish Research Council for Science, Engineering and Technology: Funded by the National Development Plan and the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support. The authors wish to thank Mr. P. Savage and Dr. J. P. McGarry for input and assistance. The simulations in this work were performed on the SGI Altix 3700 high performance computer at NUI, Galway and the Bull NovaScale 6320 at ICHEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. McHugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harewood, F., McHugh, P. Modeling of Size Dependent Failure in Cardiovascular Stent Struts under Tension and Bending. Ann Biomed Eng 35, 1539–1553 (2007). https://doi.org/10.1007/s10439-007-9326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9326-6

Keywords

Navigation