Skip to main content

Advertisement

Log in

Biochemomechanics of Cerebral Vasospasm and its Resolution: II. Constitutive Relations and Model Simulations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cerebral vasospasm is a poorly understood clinical condition that appears to result from complex biochemical and biomechanical processes that manifest as yet another example of vascular growth and remodeling. We submit that mathematical modeling holds great promise to help synthesize diverse types of data and thereby to increase our understanding of vasospasm. Toward this ultimate goal, we present constitutive relations and parametric studies that illustrate the potential utility of a new theoretical framework that combines information on wall mechanics, hemodynamics, and chemical kinetics. In particular, we show that chemical and mechanical mediators of cellular and extracellular matrix turnover can differentially dominate the progression and resolution of vasospasm. Moreover, based on our simulations, endothelial damage can significantly alter the time-course and extent of vasospasm as can impairment of autoregulation. Although the present results are consistent with salient features of clinically reported vasospasm, and thus provide some new insight, we suggest that most importantly they reveal areas of pressing need with regard to the collection of additional experimental data. Without appropriate data, our understanding of cerebral vasospasm will remain incomplete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Notes

  1. It is well known that both mechanical (mechanotransduction) and chemical (e.g., via growth factors and cytokines) stimulation alters production rates, but functional forms for synergistic vs. competitive effects remain to be determined.

  2. This is inconsistent with the existence of residual stress in an artery6 and the separate roles played by collagen and elastin.41

References

  1. Baek S., Rajagopal K. R., Humphrey J. D. (2006) A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128(1):142–149

    Article  PubMed  CAS  Google Scholar 

  2. Bai N., Moien-Afshari F., Washio H., Min A., Laher I. (2004) Pharmacology of the mouse-isolated cerebral artery. Vascul. Pharmacol. 41(3):97–106

    Article  PubMed  CAS  Google Scholar 

  3. Bai T. R., Bates J. H. T., Brusasco V., Camoretti-Mercado B., Chitano P., Deng L. H., Dowell M., Fabry B., Ford L. E., Fredberg J. J., Gerthoffer W. T., Gilbert S. H., Gunst S. J., Hai C., Halayko A. J., Hirst S. J., James A. L., Janssen L. J., Jones K. A., King G. G., Lakser O. J., Lambert R. K., Lauzon A., Lutchen K. R., Maksym G. N., Meiss R. A., Mijailovich S. M., Mitchell H. W., Mitchell R. W., Mitzner W., Murphy T. M., Pare P. D., Schellenberg R. R., Seow C. Y., Sieck G. C., Smith P. G., Smolensky A. V., Solway J., Stephens N. L., Stewart A. G., Tang D. D., Wang L. (2004) On the terminology for describing the length–force relationship and its changes in airway smooth muscle. J. Appl. Physiol. 97(6):2029–2034

    Article  PubMed  Google Scholar 

  4. Chuong C. J., Fung Y. C. (1983) Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105(3):268–274

    Article  PubMed  CAS  Google Scholar 

  5. Chuong C. J., Fung Y. C. (1984) Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17(1):35–40

    Article  PubMed  CAS  Google Scholar 

  6. Chuong C. J., Fung Y. C. (1986) On residual stresses in arteries. J. Biomech. Eng. 108(2):189–192

    PubMed  CAS  Google Scholar 

  7. Clower B. R., Yamamoto Y., Cain L., Haines D. E., Smith R. R. (1994) Endothelial injury following experimental subarachnoid hemorrhage in rats: effects on brain blood flow. Anat. Rec. 240(1):104–114

    Article  PubMed  CAS  Google Scholar 

  8. Dorrington K. L., Mccrum N. G. (1977) Elastin as a rubber. Biopolymers 16:1201–1222

    Article  PubMed  CAS  Google Scholar 

  9. Farrar J. K. (1975) Chronic cerebral arterial spasm. The role of intracranial pressure. J. Neurosurg. 43(4):408–417

    PubMed  Google Scholar 

  10. Fung, Y. C. Biomechanics: Motion, Flow, Stress, and Growth. Springer, 1990

  11. Gleason R. L., Humphrey J. D. (2004) A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J. Vasc. Res. 41:352–363

    Article  PubMed  CAS  Google Scholar 

  12. Gleason R. L., Taber L. A., Humphrey J. D. (2004) A 2-d model of flow-induced alterations in the geometry, structure, and properties of carotid arteries. J. Biomech. Eng. 126:371–381

    Article  PubMed  CAS  Google Scholar 

  13. Handa Y., Hayashi M., Takeuchi H., Kubota T., Kobayashi H., Kawano H. (1992) Time course of the impairment of cerebral autoregulation during chronic cerebral vasospasm after subarachnoid hemorrhage in primates. J. Neurosurg. 76:493–501

    PubMed  CAS  Google Scholar 

  14. Holzapfel G. A., Gasser T. C., Ogden R. W. (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61(1–3):1–48

    Article  Google Scholar 

  15. Hu, J. J., S. Baek, and J. D. Humphrey. Stress–strain behavior of the passive basilar artery in normotension and hypertension. J. Biomech. (in press)

  16. Humphrey, J. D., S. Baek, and L. E. Niklason. Biochemomechanics of cerebral vasospasm and its resolution: I. A new hypothesis and theoretical framework. Ann. Biomed. Eng. doi:10.1007/s10439-007-9321-y.

  17. Ishiguro M., Puryear C. B., Bisson E., Saundry C. M., Nathan D. J., Russell S. R., Tranmer B. I., Wellman G. C. (2002) Enhanced myogenic tone in cerebral arteries from a rabbit model of subarachnoid hemorrhage. Am. J. Physiol. Heart Circ. Physiol. 283:H2217–H2225

    PubMed  CAS  Google Scholar 

  18. Johshita H., Kassell N. F., Sasaki T., Nakagomi T., Ogawa H. (1992) Biphasic constriction of rabbit basilar artery following experimental subarachnoid hemorrhage: a morphometric study. Surg. Neurol. 37(2):106–114

    Article  PubMed  CAS  Google Scholar 

  19. Langille, B. L. (1993) Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix. J. Cardiovasc. Pharmacol. 21:S11–S17

    Article  PubMed  Google Scholar 

  20. Langille B. L., Bendeck M. P., Keeley F. W. (1989) Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am. J. Physiol. 256:H931–H939

    PubMed  CAS  Google Scholar 

  21. Lanir Y. (1983) Constitutive equations for fibrous connective tissues. J. Biomech. 16(1):1–12

    Article  PubMed  CAS  Google Scholar 

  22. Lodi C. A., Ursino M. (1999) Hemodynamic effect of cerebral vasospasm in humans: a modeling study. Ann. Biomed. Eng. 27:257–273

    Article  PubMed  CAS  Google Scholar 

  23. Macdonald R. L., Weir B. (2001) Cerebral Vasospasm. Academic Press, San Diego

    Google Scholar 

  24. Mayberg M. R., Okada T., Bark D. H. (1990) Morphologic changes in cerebral arteries after subarachnoid hemorrhage. Neurosurg. Clin. N. Am. 1(2):417–32

    PubMed  CAS  Google Scholar 

  25. Meurice T., Vallet B., Bauters C., Dupuis B., Lablanche J. M., Bertrand M. E. (1996) Role of endothelial cells in restenosis after coronary angioplasty. Fundam. Clin. Pharmacol. 10(3):234–242

    Article  PubMed  CAS  Google Scholar 

  26. Nabavi D. G., LeBlanc L. M., Baxter B., Lee D. H., Fox A. J., Lownie S. P., Ferguson G. G., Craen R. A., Gelb A. W., Lee T. Y. (2001) Monitoring cerebral perfusion after subarachnoid hemorrhage using CT. Neuroradiology 43:7–16

    Article  PubMed  CAS  Google Scholar 

  27. Nagasawa S., Handa H., Okumura A., Naruo Y., Moritake K., Hayashi K. (1979) Mechanical properties of human cerebral arteries. Part 1: Effects of age and vascular smooth muscle activation. Surg. Neurol. 12(4):297–304

    PubMed  CAS  Google Scholar 

  28. Nagasawa S., Handa H., Okumura A., Naruo Y., Okamoto S., Moritake K., Hayashi K. (1980) Mechanical properties of human cerebral arteries: part 2. Vasospasm. Surg. Neurol. 14:285–290

    PubMed  CAS  Google Scholar 

  29. Naghshin J., Wang L., Pare P. D., Seow C. Y. (2003) Adaptation to chronic length change in explanted airway smooth muscle. J. Appl. Physiol. 95(1):448–453

    PubMed  Google Scholar 

  30. Nissen R., Cardinale G. J., Udenfriend S. (1978) Increased turnover of arterial collagen in hypertensive rates. Proc. Natl. Acad. Sci. USA 75:451–453

    Article  PubMed  CAS  Google Scholar 

  31. Rachev A., Hayashi K. (1999) Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27:459–468

    Article  PubMed  CAS  Google Scholar 

  32. Rachev A., Stergiopulos N., Meister J. J. (1998) A model for geometric and mechanical adaptation of arteries to sustained hypertension. ASME J. Biomech. Eng. 120(1):9–17

    CAS  Google Scholar 

  33. Rätsep T., Asser T. (2001) Cerebral hemodynamic impairment after aneurysmal subarachnoid hemorrhage as evaluated using transcranial Doppler ultrasonography: relationship to delayed cerebral ischemia and clinical outcome. J. Neurosurg. 95:393–401

    Article  PubMed  Google Scholar 

  34. Strauss B. H., Chisholm R. J., Keeley F. W., Gotlieb A. I., Logan R. A., Armstrong P. W. (1994) Extracellular matrix remodeling after balloon angioplasty injury in a rabbit model of restenosis. Circ. Res. 75(4):650–658

    PubMed  CAS  Google Scholar 

  35. Strauss B. H., Robinson R., Batchelor W. B., Chisholm R. J., Ravi G., Natarajan M. K., Logan R. A., Mehta S. R., Levy D. E., Ezrin A. M., Keeley F. W. (1996) In vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases. Circ. Res. 79(3):541–550

    PubMed  CAS  Google Scholar 

  36. Taber L. A. (1998) A model for aortic growth based on fluid shear stresses and fiber stresses. ASME J. Biomech. Eng. 120:348–354

    CAS  Google Scholar 

  37. Valentín, A., and J. D. Humphrey. On time-courses of cell and matrix turnover in arterial growth and remodeling. Submitted for publication.

  38. Walmsley J. G., Campling M. R., Chertkow H. M. (1983) Interrelationships among wall structure, smooth muscle orientation, and contraction in human major cerebral arteries. Stroke 14:781–790

    PubMed  CAS  Google Scholar 

  39. Yamaguchi-Okada M., Nishizawa S., Koide M., Nonaka Y. (2005) Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage. J. Appl. Physiol. 99(5):2045–2052

    Article  PubMed  Google Scholar 

  40. Yundt K. D., Grubb R. L., Diringer M. N., Powers W. J. (1998) Autoregulatory vasodilation of parenchymal vessels is impaired during cerebral vasospasm. J. Cerebral Blood Flow Metabol. 18:419–424

    Article  CAS  Google Scholar 

  41. Zeller P. J., Skalak T. C. (1998) Contribution of individual structural components in determining the zero-stress state in small arteries. J. Vasc. Res. 35(1):8–17

    Article  PubMed  CAS  Google Scholar 

  42. Zulliger M. A., Rachev R., Stergiopulos N. (1987) A constitutive formulation of arterial mechanics including vascular smooth muscle tone. J. Vasc. Surg. 5:413–420

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported, in part, by NIH grants HL-80415 and HL-64372 (through the BRP Program).

Author information

Authors and Affiliations

Authors

Additional information

Address correspondence to J. D. Humphrey, Department of Biomedical Engineering, Texas A&M University, 337 Zachry Engineering Center, 3120 TAMU, College Station, TX 77843-3120, USA. Electronic mail: jhumphrey@tamu.edu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, S., Valentín, A. & Humphrey, J.D. Biochemomechanics of Cerebral Vasospasm and its Resolution: II. Constitutive Relations and Model Simulations. Ann Biomed Eng 35, 1498–1509 (2007). https://doi.org/10.1007/s10439-007-9322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9322-x

Keywords

Navigation