Skip to main content

Advertisement

Log in

Detection of Nonlinearity in Cardiovascular Variability Signals using Cyclostationary Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A novel approach for detection of polynomial nonlinearity in the neuro-cardiovascular system based on cyclostationary analysis is presented. Metronome breathing is employed to provide a sinusoidal input to the neuro-cardiovascular system in which Heart Rate Variability (HRV) and Blood Pressure Variation (BPV) are considered as its outputs. The presence of new harmonics of the main respiratory rate in the HRV and BPV is investigated by using the concept of (self) phase and (self) frequency coupling. It is shown that a second order polynomial nonlinear system is actually involved in producing the HRV and BPV. The strength of this nonlinearity decreases with increasing the breathing rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

Notes

  1. For real signals C 1y_o (α) is symmetric with respect to α, therefore only α ≥  0 is needed for the analysis.

References

  1. Censi F., Calcagnini G., Lino S., et al. (2000) Transient phase locking patterns among respiration, heart rate and blood pressure during cardiorespiratory synchronization in humans. Med. Bio. Eng. Comp. 38:416–426

    Article  CAS  Google Scholar 

  2. Chon K. H., Mullen T. J., Cohen R. J. (1996) A Dual-Input nonlinear system analysis of autonomic modulation of heart rate. IEEE Trans. Biomed. Eng. 43(5):530–543

    Article  PubMed  CAS  Google Scholar 

  3. Christini D. J., Bennett F. M., Lutchen K. R., et al. (1995) Application of linear and nonlinear time series modeling to heart rate dynamics analysis. IEEE Trans. Biomed. Eng. 42(4):411–415

    Article  PubMed  CAS  Google Scholar 

  4. Dandawate A. V., Giannakis G. B. (1994) Statistical tests for presence of cyclostationarity. IEEE Trans. Signal Proc. 42(9):2355–2369

    Article  Google Scholar 

  5. Di Rienzo, M., G. Mancia and G. Parati et al. Methodology and Clinical Applications of Blood Pressure and Heart Rate Analysis. IOS Press, 1999.

  6. Gardner, W. A. Statistical spectral estimation, A nonprobabilistic approach. Prentice Hall, 1988.

  7. Giannakis G. B., Zhou G. (1995) Harmonics in multiplicative and additive noise: parameter estimation using cyclic statistics. IEEE Trans. Signal Proc. 43(9):2217–2221

    Article  Google Scholar 

  8. Hirsch, J. A., Bishop B. (1981) Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. J. Physiol. 241:H620–H629

    PubMed  CAS  Google Scholar 

  9. Kaplan, D. T. Nonlinearity and nonstationarity: the use of surrogate data in interpreting fluctuations. In: Frontiers of Blood Pressure and Heart Rate Analysis, edited by M. Di Rienzo et al. IOS Press, pp. 15–28, 1997.

  10. Kitney R. I., Fulton T., McDonald A., Linkens D. (1985) Transient interaction between blood pressure, respiration and heart rate in man. J. Biomed. Eng. 7:217–224

    Article  PubMed  CAS  Google Scholar 

  11. Malik, M., and A. Camm. Heart Rate Variability. Futura Pub. Co, 1995.

  12. Malliani A., Pagani M., Lombardi F., Cerutti S. (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84(2):482–492

    PubMed  CAS  Google Scholar 

  13. Marmarelis V. Z. Nonlinear Dynamic Modeling of Physiological Systems. IEEE Press, 2004.

  14. Nikias C. L., and A. P. Petropulu Higher order spectral analysis, a nonlinear signal processing. Prentice Hall, 1993.

  15. Pagani, M., Lombardi, F., Guzzetti, S. et al. (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 59(2):178–193.

    PubMed  CAS  Google Scholar 

  16. Pyetan E., Akselrod S. (2006) Do the High-Frequency Indexes of HRV Provide a Faithful Assessment of Cardiac Vagal Tone? A Critical Theoretical Evaluation. IEEE Trans. Biomed. Eng. 50:777–783

    Article  Google Scholar 

  17. Saul J. P., Berger R. D., Albrecht P., Stein S. P., Chen M. H., Cohen R. J. (1991) Transfer function analysis of the circulation: Unique insights into cardiovascular regulation. Am. J. Physiol. 91:H1231–H1245

    Google Scholar 

  18. Schmidt, G. and G. E. Morfill Nonlinear methods for heart rate variability assessment. In: M. Malik and Camm A. J. (eds.) Heart Rate Variability. Futura Pub. Co., Chapter 7, pp. 87–98, 1995.

  19. Seydnejad S., Kitney R. I. (1997) Real time heart rate variability extraction using the Kaiser window. IEEE Trans. Biomed. Eng. 44:990–1005

    Article  PubMed  CAS  Google Scholar 

  20. Seydnejad S. R., R. I. Kitney. Investigation of HRV and BPV by a nonlinear closed loop model. In: Clinical Applications of Heart Rate Variability and Blood Pressure Variation, edited by M. Di Rienzo et al. IOS Press, Chap. 9, 1999.

  21. Seydnejad S., Kitney R.I. (1999) Detection of nonlinearity in HRV using cyclostationary analysis. Proc. IEEE 21st EMBS Conf. 2:993

    Google Scholar 

  22. Signorini, M.G. and S. Cerutti Lyapunov exponents calculated from heart rate variability time series. Proc. 16th IEEE Eng Medicine & Bio. Vol. 1, pp. 119–120, 1994.

  23. Silipo R., Deco G., Gremigni C. (1999) A characterization of HRV’s nonlinear hidden dynamics by means of Markov model. IEEE Trans. Biomed. Eng. 46:978–986

    Article  PubMed  CAS  Google Scholar 

  24. Takalo R. Variability of Blood Pressure and Heart Rate in Borderline and Mild Hypertension. Uppsala University Press, 1999.

  25. Zhong Y., Wang H., Ju K., Jan K., Chon K. H. (2004) Nonlinear analysis of the separate contributions of autonomic nervous systems to heart rate variability using principal dynamic modes. IEEE Trans. Biomed. Eng. 43(51):255–262

    Article  Google Scholar 

  26. Zhou, G. and G. B. Giannakis. Estimating coupled harmonics in additive and multiplicative noise. Proc. 27th ASILOMAR Conf. Signals, Syst., Comp. Pacific Grove, CA, pp. 1250–1254, Nov. 1993.

  27. Zhou G., Giannakis G.B. (1995) Retrieval of self-coupled harmonics. IEEE Trans. Signal Proc. 43(5):1173–1186

    Article  Google Scholar 

  28. Zhou G., Giannakis G. B. (1995) Harmonics in multiplicative and additive noise: performance analysis of cyclic estimators. IEEE Trans. Signal Proc. 43(6):1445–1460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Seydnejad.

Appendix A

Appendix A

The amplitude of the input sinusoids in Eq. (18) are written in the form of a modulated signal composed of a constant term and a time varying part, w 1(t) = W 1 + Δw 1(t), w 2(t) = W 2 + Δw 2(t). In order for the inequality (19) to be valid we should have,

$$ \frac{C_{1y} (2f_0)}{C_{1y} (f_0)} > \frac{C_{1x} (2f_0)}{C_{1x} (f_0)} \Rightarrow \frac{\frac{a}{2}m_{w_2} +\frac{b}{4}m_{w_1^2}} {\frac{a}{2}m_{w_1} +\frac{b}{2}m_{w_1 w_2}} > \frac{m_{w_2}}{m_{w_1}} \Rightarrow \frac{b}{4}m_{w_1} m_{w_1^2} > \frac{b}{2}m_{w_1 w_2} m_{w_2} $$
(20)

Hence,

$$ \begin{array}{l} E\left. \left\{ W_1 \left( 1+\frac{\Delta w_1 (t)}{W_1} \right) \right. \right\} E\left. \left\{ W_1^2\left( 1+\frac{\Delta w_1 (t)}{W_1} \right)^2 \right. \right\} > 2E\left. \left\{ W_1 \left( 1+\frac{\Delta w_1 (t)}{W_1} \right) W_2 \left( 1+\frac{\Delta w_2 (t)}{W_2} \right) \right. \right\} E\left. \left\{ W_2 \left( 1+\frac{\Delta w_2 (t)}{W_2} \right) \right. \right\} \\ \Rightarrow W_1^3E\left. \left\{ 1+\frac{\Delta w_1 (t)}{W_1} \right. \right\} E\left. \left\{ 1+\frac{2\Delta w_1 (t)}{W_1} \right. \right\} > 2W_1 W_2^2E\left. \left\{ 1+\frac{\Delta w_1 (t)}{W_1}+\frac{\Delta w_2 (t)}{W_2} \right. \right\} E\left. \left\{ 1+\frac{\Delta w_2 (t)}{W_2} \right. \right\} \end{array} $$
(21)

Note that we have ignored the second order terms compared to the first order terms (e.g. Δw 21 (t) << Δw 1 (t)) in the above derivation. The worst case condition for the above inequality to be valid occurs when Δw 1(t) = 0 and Δw 2(t) = W 2 then Eq. (21) becomes,

$$ W_1^3 > 8W_1 W_2^2 \Rightarrow W_1 > \sqrt 8 \,W_2 \Rightarrow W_1 > 2.828 W_2 \Rightarrow W_1 > 3 W_2 $$
(22)

This means that in the worst case condition (19) remains valid as long as the magnitude of the second order harmonic is three times smaller than the magnitude of the main component.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seydnejad, S. Detection of Nonlinearity in Cardiovascular Variability Signals using Cyclostationary Analysis. Ann Biomed Eng 35, 744–754 (2007). https://doi.org/10.1007/s10439-007-9281-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9281-2

Keywords

Navigation