Skip to main content
Log in

Analyzing Trends in Brain Interface Technology: A Method to Compare Studies

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Continued progress in the field of Brain Interface (BI) research has encouraged the rapid expansion of the BI community over the last two decades. As the number of BI researchers and organizations steadily increases, newer and more advanced technologies are constantly produced, evaluated, and reported. Though the BI community is committed to accurate and objective evaluation of methods, systems, and technology, the diversity of the field has hindered the development of objective methods of comparison. This paper introduces a new method for directly comparing studies of BI technology based on the theoretical models and taxonomy proposed by Mason, Moore, and Birch. The effectiveness of the proposed method was demonstrated by interpreting and comparing a representative set of 21 BI studies. The method allowed us to 1) identify the salient aspects of a specific BI study, 2) identify what has been reported and what has been omitted, 3) facilitate a complete and objective comparison with other studies, and 4) characterize overall trends, areas of inactivity, and reporting practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIFURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.

Similar content being viewed by others

Notes

  1. In this work, the terms Brain–Computer Interface (BCI) research, Brain–Machine Interface (BMI) research, and Direct Brain Interface (DBI) research are included under the umbrella term Brain Interface (BI) research.

REFERENCES

  1. Allison, B. Z., and J. A. Pineda, ERPs evoked by different matrix sizes: Implications for a brain computer interface (BCI) system. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):110–113, 2003.

    Article  PubMed  Google Scholar 

  2. Bayliss, J. D., Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):113–116, 2003.

    Article  PubMed  Google Scholar 

  3. Birch, G. E., Z. Bozorgzadeh, and S. G. Mason. Initial on-line evaluation of the LF-ASD brain–computer interface with able-bodied and spinal-cord subjects using imagined voluntary motor potentials. Trans. Neural Sci. Rehabil. Eng. 11(1), 2002.

  4. Blankertz, B., G. Dornhege, C. Schäfer, R. Krepki, J. Kolmorgen, K. R. Müller, V. Kunzmann, F. Losch, and G. Curio. Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE 2003.

  5. Cincotti, F., D. Mattia, C. Babiloni, F. Carducci, S. Salinari, L. Bianchi, M. G. Marciani, and F. Babiloni. The use of EEG modifications due to motor imagery for brain–computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):131–133, 2003.

    Article  PubMed  Google Scholar 

  6. Curran, E., P. Sykacek, M. Stokes, S. J. Roberts, W. Penny, I. Johnsrude, and A. M. Owen Cognitive taskes for driving a brain–computer interface system: A pilot study. IEEE Trans. Neural Syst. Rehabil. Eng.12(1):48–54, 2004.

    Article  PubMed  Google Scholar 

  7. Delorme, A., and S. Makeig, EEG changes accompanying learned regulation of 12-Hz EEG activity. IEEE Trans. Rehabil. Eng, 2003, in press.

  8. Donchin, E., K. M. Spencer, and R. Wijesinghe. The mental prosthesis: Assessing the speed of a P300-based brain–computer interface. IEEE Trans. Rehabil. Eng. 8(2):174–179, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Gao, X., D. Xu, M. Cheng, and S. Gao. A BCI-based environmental controller for the motion-disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):137–140, 2003.

    Article  PubMed  Google Scholar 

  10. Garrett, D., D. A. Peterson, C. W. Anderson, and M. H. Thaut. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):141–144, 2003.

    Article  PubMed  Google Scholar 

  11. Kennedy, P. R., R. A. Bakay, M. M. Moore, K. Adams, and J. Goldwaithe Direct control of a computer from the human central nervous system. IEEE Trans. Rehabil. Eng. 8(2):198–202, 2000.

    Article  PubMed  CAS  Google Scholar 

  12. Kipke, D. R., R. J. Vetter, J. C. Williams, and J. F. Hetke. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):151–155, 2003.

    Article  PubMed  Google Scholar 

  13. Levine, S. P., J. E. Huggins, S. L. Bement, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and B. J. Smith. A direct brain interface based on event-related potentials. IEEE Trans. Rehabil. Eng. 8(2):180–185, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Mason, S. G., A. Bashashati, M. Fatourechi, and G. E. Birch. Conceptual models for brain-interface technology design. http://www.braininterface.org/publishedlinks/BIDesignFramework/BrainInterfaceDesignFramework-models-frame.htm. 2005.

  15. Mason, S. G., M. M. Moore, and G. E. Birch. A general framework for brain interface evaluation. IEEE Trans. Biomed Eng. 2004, submitted for publication.

  16. Mason, S. G., and G. E. Birch. A general framework for brain–computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng. 11(1):70–85, 2003.

    Article  PubMed  Google Scholar 

  17. McFarland, D. J., W. A. Sarnacki, and J. R. Wolpaw. Brain–computer interface (BCI) operation: Optimizing information transfer rates. Biol. Psychol. 63(3):237–251, 2003.

    Article  PubMed  Google Scholar 

  18. Millan, J. R., J. Mourino, M. Franze, F. Cincotti, M. Varsta, J. Heikkonen, and F. Babilioni. A local neural classifier for the recognition of EEG patterns associated to mental tasks. IEEE Trans Neural Networks 13(3):678–686, 2003.

    Article  Google Scholar 

  19. Neumann, N., T. Hinterberger, J. Kaiser, U. Leins, N. Birbaumer, and A. Kubler. Automatic processing of self-regulation of slow cortical potentials: Evidence from brain–computer communication in paralysed patients. Clin. Neurophysiol. 115(3):628–635, 2004.

    Article  PubMed  CAS  Google Scholar 

  20. Obermaier, B., G. R. Muller, and G. Pfurtscheller, “Virtual keyboard” controlled by spontaneous EEG activity. IEEE Trans. Neural Syst. Rehabil. Eng. 11(4):422–426, 2003.

    Article  PubMed  CAS  Google Scholar 

  21. Serruya, M., N. Hatsopoulos, M. Fellows, L. Paninski, and J. P. Donoghue Robustness of neuroprosthetic decoding algorithms. Biol. Cybernet. 88(3):219–228, 2003.

    Article  Google Scholar 

  22. Taylor, D. M., S. I. H. Tillery, and A. B. Schwartz. Information conveyed through brain-control: Cursor versus robot. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):195–199, 2003.

    Article  PubMed  Google Scholar 

  23. Trejo, L. J., K. R. Wheeler, C. C. Jorgensen, R. Rosipal, S. T. Clanton, B. Matthews, A. D. Hibbs, R. Matthews, and M. Krupka. Multimodal neuroelectric interface development. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):199–204, 2003.

    Article  PubMed  Google Scholar 

  24. Vaughan, T., W. J. Heetderks, L. J. Trejo, W. Z. Rymer, M. Wienrich, M. M. Moore, A. Kubler, B. H. Dobkin, N. Birbaumer, E. Donchin, E. W. Wolpaw, and J. R. Wolpaw. Brain–computer interface technology: A review of the second international meeting. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):94–109, 2003.

    Article  PubMed  Google Scholar 

  25. Wessberg, J., C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K. Chapin, J. Kim, S. J. Biggs, M. A. Srinivasan, and M. A. Nicolelis. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408 (6810):361–365, 2000.

    Article  PubMed  CAS  Google Scholar 

  26. Wolpaw, J. R., N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan. Brain–computer interface technology: A review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2):164–173, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Wolpaw, J. R., D. McFarland, and G. Pfurtscheller. EEG-based communication: Improved accuracy by reponse verification. IEEE Trans. Rehabil. Eng. 6(3):326–333, 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation's Universal Access program, under NSF Project number 0118917, the Canadian Institutes of Health Research grant MOP-62711, the Natural Sciences and Engineering Research Council of Canada, grant 90278-02. We would like to thank Gordon Handford, Adriane Davis, Brendan Allison, Jaimie Borisoff and Regi Bohringer for their insightful feedback during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Moore Jackson.

APPENDIX: TEST SET

APPENDIX: TEST SET

The representative test set used for method demonstration is summarized in Table A1. For space efficiency, we will use the following abbreviations: TNSRE, IEEE Transactions on Neural Systems and Rehabilitation Engineering and TRE, IEEE Transactions on Rehabilitation Engineering.

TABLE A1. Representative test set used for method demonstration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, M.M.M., Mason, S.G. & Birch, G.E. Analyzing Trends in Brain Interface Technology: A Method to Compare Studies. Ann Biomed Eng 34, 859–878 (2006). https://doi.org/10.1007/s10439-005-9055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9055-7

Keywords

Navigation