Skip to main content
Log in

Slow-Fast Decoupling of the Disparity Convergence Eye Movements Dynamics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

In this paper we show how to separate the slow and fast dynamics of the disparity convergence of the eye movements dynamic model. The dynamic equations obtained determine the modified slow dynamics that takes into account the impact of the fast dynamics and the modified fast dynamics that takes into account the impact of the slow dynamics. The slow fast decoupling is achieved by finding analytical solutions of the transformation equations used. The transformed slow and fast subsystems have very simple forms. Having separated the slow and fast dynamics completely, neural control problems for the slow and fast eye movements dynamics can be independently studied and better understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.

Similar content being viewed by others

REFERENCES

  1. Alvarez, T. L., J. L. Semmlow, and W. Yuan. Closely-separated, fast dynamic movements in disparity vergence. J. Neurophysiol. 79:37–44, 1998.

    PubMed  CAS  Google Scholar 

  2. Alvarez, T. L., J. L. Semmlow, W. Yuan, and P. Munoz. Dynamic details of disparity convergence eye movements. Ann. Biomed. Eng. 27:380–390, 1999.

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez, T. L., J. L. Semmlow, W. Yuan, and P. Munoz. Disparity vergence double responses processed by internal error. Vis. Res. 40:341–347, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Alvarez, T. L., J. L. Semmlow, W. Yuan, and P. Munoz. Comparison of disparity vergence system responses to predictable and non-predictable stimulations. Curr. Physiol. Cogn. 21:243–261, 2002.

    Google Scholar 

  5. Chang, K. Singular perturbations of a general boundary value problem. SIAM J. Math. Anal. 3:520–526, 1972.

    Google Scholar 

  6. Gamlin, P., and L. Mays. Dynamic properties of medical rectus motoneurons during vergence eye movements. J. Neurophysiol. 67:64–74, 1992.

    PubMed  CAS  Google Scholar 

  7. Horng, J., J. L. Semmlow, G. Hung, and K. Ciuffreda. Initial component control in disparity vergence: A model-based study. IEEE Trans. Biomed. Eng. 45:249–257, 1998.

    Article  PubMed  CAS  Google Scholar 

  8. Hung, G. Dynamic model of the vergence eye movement system: Simulations using MATLAB/SIMULINK. Comput. Methods Programs Biomed. 55:59–68, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Hung, G., and K. J. Ciuffreda (eds.). Models of the Visual System, Chap. 9, New York: Kluwer Academic/Plenum, 2002.

  10. Hung, G. K., J. L. Semmlow, and K. J. Ciuffreda. A dual-model dynamic model of the vergence eye movement system. IEEE Trans. Biomed. Eng. 33:1021–1028, 1986.

    Article  PubMed  CAS  Google Scholar 

  11. Khosroyani, M., and G. K. Hung. A dual-mode dynamic model of the human accommodation system. Bull. Math. Biol. 64:285–299, 2002.

    Article  PubMed  Google Scholar 

  12. Kokotovic, P., H. Khalil, and J. O’Reilly. Singular Perturbation Methods in Control: Analysis and Design. Orlando, FL: Academic, 1986.

    Google Scholar 

  13. Munoz, P., J. L. Semmlow, W. Yuan, and T. L. Alvarez. Short-term modification of disparity convergence eye movements. Vis. Res. 39:1695–1705, 1999.

    Article  PubMed  CAS  Google Scholar 

  14. Robinson, D. A. The mechanics of human saccadic eye movement. J. Physiol. 17:245–264, 1964.

    Google Scholar 

  15. Semmlow, J. L., W. Yuan, and T. L. Alvarez. Evidence for separate control of slow version and vergence eye movements: Support of Hering's law. Vis. Res. 38:1145–1152, 1998.

    Article  PubMed  CAS  Google Scholar 

  16. Semmlow, J. L., W. Yaun, T. L. Alvarez. Short-term adaptive control processes in vergence eye movement. Curr. Physiol. Cogn. 21:343–375, 2002.

    Google Scholar 

  17. Szidarovszky, F., and A. Bahil. Linear Syst. Theory. Boca Raton, Florida: CRC, 1992.

    Google Scholar 

  18. Van Opstal, A. J., A. M. van Gisbergen, and J. J. Eggermont. Reconstruction of neural control signals for saccade based on an inverse method. Vis. Res. 25:789–801, 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Yuan, W., J. L. Semmlow, T. L. Alvarez, and P. Munoz. Dynamics of the disparity vergence step response: A model based analysis. IEEE Trans. Biomed. Eng. 46:1191–1198, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The author is thankful to Professor George Hung from Rutgers University, Department of Biomedical Engineering, for providing useful clarification of the considered vision system dynamic model and an interpretation of the roles of its slow and fast components.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verica Radisavljevic-Gajic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radisavljevic-Gajic, V. Slow-Fast Decoupling of the Disparity Convergence Eye Movements Dynamics. Ann Biomed Eng 34, 310–314 (2006). https://doi.org/10.1007/s10439-005-9042-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9042-0

Keywords

Navigation