Skip to main content

Smooth Eye Movements in Humans: Smooth Pursuit, Optokinetic Nystagmus and Vestibular Ocular Reflex

  • Chapter
  • First Online:
Eye Movement Research

Abstract

Smooth pursuit eye movements (SPEM), optokinetic nystagmus (OKN) and the vestibular ocular reflex (VOR) enable us to focus our eyes constantly on objects that move relative to us. In real life situations, natural stimuli that elicit SPEM, OKN and the VOR are processed simultaneously, and do not always act synergistically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anastasio, T. J. (1997). A burst-feedback model of fast-phase burst generation during nystagmus. Biol Cybern Biological Cybernetics, 76, 139–152.

    Article  Google Scholar 

  • Balaban, C. D., & Ariel, M. (1992). A beat-to-beat interval generator for optokinetic nystagmus. Biol. Cybern. Biological Cybernetics, 66, 203–216.

    Article  PubMed  Google Scholar 

  • Barnes, G. R. (2008). Cognitive processes involved in smooth pursuit eye movements. Brain and Cognition, 68, 309–326.

    Article  PubMed  Google Scholar 

  • Barnes, G. R., & Collins, C. J. (2008). Evidence for a link between the extra-retinal component of random-onset pursuit and the anticipatory pursuit of predictable object motion. Journal of Neurophysiology, 100, 1135–1146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes, G. R., Donnelly, S. F., & Eason, R. D. (1987). Predictive velocity estimation in the pursuit reflex response to pseudo-random and step displacement stimuli in man. Journal of Physiology, 389, 111–136.

    Article  Google Scholar 

  • Barton, J. J., Simpson, T., Kiriakopoulos, E., et al. (1996). Functional MRI of lateral occipitotemporal cortex during pursuit and motion perception. Annals of Neurology, 40, 387–398.

    Article  PubMed  Google Scholar 

  • Becker, W., & Fuchs, A. F. (1985). Prediction in the oculomotor system: smooth pursuit during transient disappearance of a visual target. Experimental Brain Research, 57, 562–575.

    Article  PubMed  Google Scholar 

  • Benson, P. J., Beedie, S. A., Shephard, E., Giegling, I., Rujescu, D., & St Clair, D. (2012). Simple viewing tests can detect eye movement abnormalities that distinguish schizophrenia cases from controls with exceptional accuracy. Biological Psychiatry, 72, 716–724. https://doi.org/10.1016/j.biopsych.2012.04.019.

    Article  PubMed  Google Scholar 

  • Billino, J., Henning, J., & Gegenfurtner, K. R. (2012). Dopaminerge Modulation der okulomotorischen Kontrolle bei Gesunden. Psychologie und Gehirn (pp. 155–156). Germany: Jena.

    Google Scholar 

  • Bremmer, F. (2005). Navigation in space–the role of the macaque ventral intraparietal area. Journal of Physiology, 566, 29–35.

    Article  Google Scholar 

  • Bremmer, F., Distler, C., & Hoffmann, K. P. (1997). Eye position effects in monkey cortex. II. Pursuit- and fixation-related activity in posterior parietal areas LIP and 7A. Journal of Neurophysiology, 77, 962–977.

    Article  PubMed  Google Scholar 

  • Buizza, A., & Ramat, S. (2005). About the effects of velocity saturation on smooth pursuit. Annals of the New York Academy of Sciences, 1039, 459–462.

    Article  PubMed  Google Scholar 

  • Burke, M. R., & Barnes, G. R. (2008). Brain and behavior: a task-dependent eye movement study. Cerebral Cortex, 18, 126–135.

    Article  PubMed  Google Scholar 

  • Calkins, M. E., Iacono, W. G., & Ones, D. S. (2008). Eye movement dysfunction in first-degree relatives of patients with schizophrenia: a meta-analytic evaluation of candidate endophenotypes. Brain and Cognition, 68, 436–461.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carl, J. R., & Gellman, R. S. (1987). Human smooth pursuit: stimulus-dependent responses. Journal of Neurophysiology, 57, 1446–1463.

    Article  PubMed  Google Scholar 

  • Chawla, D., Buechel, C., Edwards, R., Howseman, A., Josephs, O., Ashburner, J., Friston, K. J. (1999). Speed-dependent responses in V5: A replication study. Neuroimage, 9, 508–515.

    Article  PubMed  Google Scholar 

  • Churchland, M. M., & Lisberger, S. G. (2001). Experimental and computational analysis of monkey smooth pursuit eye movements. Journal of Neurophysiology, 86, 741–759.

    Article  PubMed  Google Scholar 

  • Collewijn, H., & Tamminga, E. P. (1984). Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds. Journal of Physiology, 351, 217–250.

    Article  Google Scholar 

  • Daemi, M., & Crawford, J. D. (2015). A kinematic model for 3-D head-free gaze-shifts. Front Comput Neurosci, 9, 72. https://doi.org/10.3389/fncom.2015.00072.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diefendorf, A. R., & Dodge, R. (1908). An experimental study of the ocular reactions on the insane from photographic records. Brain, 31, 451–489.

    Article  Google Scholar 

  • Ding, J., Powell, D., & Jiang, Y. (2009). Dissociable frontal controls during visible and memory-guided eye-tracking of moving targets. Human Brain Mapping, 30, 3541–3552. https://doi.org/10.1002/hbm.20777.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ditchburn, R. W., & Ginsborg, B. L. (1952). Vision with a stabilized retinal image. Nature, 170, 36–37.

    Article  PubMed  Google Scholar 

  • Dukelow, S. P., DeSouza, J. F., Culham, J. C., van den Berg, A. V., Menon, R. S., & Vilis, T. (2001). Distinguishing subregions of the human MT + complex using visual fields and pursuit eye movements. Journal of Neurophysiology, 86, 1991–2000.

    Article  PubMed  Google Scholar 

  • Ettinger, U., Kumari, V., Crawford, T. J., Davis, R. E., Sharma, T., & Corr, P. J. (2003). Reliability of smooth pursuit, fixation, and saccadic eye movements. Psychophysiology, 40, 620–628.

    Article  PubMed  Google Scholar 

  • Fukushima, K., Yamanobe, T., Shinmei, Y., Fukushima, J., Kurkin, S., & Peterson, B. W. (2002). Coding of smooth eye movements in three-dimensional space by frontal cortex. Nature, 419, 157–162.

    Article  PubMed  Google Scholar 

  • Gagnon, D., Paus, T., Grosbras, M. H., Pike, G. B., & O’Driscoll, G. A. (2006). Transcranial magnetic stimulation of frontal oculomotor regions during smooth pursuit. Journal of Neuroscience, 26, 458–466.

    Article  PubMed  Google Scholar 

  • Glasauer, S. (2007). Current models of the ocular motor system. Developments in Ophthalmology, 40, 158–174.

    PubMed  Google Scholar 

  • Gottesman, I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry, 160, 636–645. https://doi.org/10.1176/appi.ajp.160.4.636.

    Article  Google Scholar 

  • Haraldsson, H. M., Ettinger, U., Magnusdottir, B. B., et al. (2010). Neuregulin-1 genotypes and eye movements in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 260, 77–85. https://doi.org/10.1007/s00406-009-0032-2.

    Article  PubMed  Google Scholar 

  • Haraldsson, H. M., Ettinger, U., Magnusdottir, B. B., Sigmundsson, T., Sigurdsson, E., Ingason, A., Petursson, H. (2009). COMT val(158)met genotype and smooth pursuit eye movements in schizophrenia. Psychiatry Research, 169, 173–175. https://doi.org/10.1016/j.psychres.2008.10.003.

    Article  PubMed  Google Scholar 

  • Heide, W., Koenig, E., Trillenberg, P., Kompf, D., & Zee, D. S. (1999). Electrooculography: technical standards and applications. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology. Supplement, 52, 223–240.

    PubMed  Google Scholar 

  • Heide, W., Kurzidim, K., & Kompf, D. (1996). Deficits of smooth pursuit eye movements after frontal and parietal lesions. Brain, 119(Pt 6), 1951–1969.

    Article  PubMed  Google Scholar 

  • Holm-Jensen, S. (1984). The significance of attention and duration of the stimulation in optokinetic nystagmus. Acta Oto-Laryngologica, 98, 21–29.

    Article  PubMed  Google Scholar 

  • Holmquist KN, M.; Andersson, R.; Dewhurst, R.; Jarodska, H.; van de Weijer J. (2012) Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford University Press London.

    Google Scholar 

  • Holzman, P. S., Proctor, L. R., & Hughes, D. W. (1973). Eye-tracking patterns in schizophrenia. Science, 181, 179–181.

    Article  PubMed  Google Scholar 

  • Ilg, U. J., Schumann, S., & Thier, P. (2004). Posterior parietal cortex neurons encode target motion in world-centered coordinates. Neuron, 43, 145–151.

    Article  PubMed  Google Scholar 

  • Ilg, U. J., & Thier, P. (2008). The neural basis of smooth pursuit eye movements in the rhesus monkey brain. Brain and Cognition, 68, 229–240.

    Article  PubMed  Google Scholar 

  • Jordan, S. (1970). Ocular pursuit movement as a function of visual and proprioceptive stimulation. Vision Research, 10, 775–780.

    Article  PubMed  Google Scholar 

  • Keller, E., & Johnsen, S. D. (1990). Velocity prediction in corrective saccades during smooth-pursuit eye movements in monkey. Experimental Brain Research, 80, 525–531.

    PubMed  Google Scholar 

  • King, W. M. (2013). Getting ahead of oneself: anticipation and the vestibulo-ocular reflex. Neuroscience, 236, 210–219. https://doi.org/10.1016/j.neuroscience.2012.12.032.

    Article  PubMed  Google Scholar 

  • Komatsu, H., & Wurtz, R. H. (1988a). Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. Journal of Neurophysiology, 60, 580–603.

    Article  PubMed  Google Scholar 

  • Komatsu, H., & Wurtz, R. H. (1988b). Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. Journal of Neurophysiology, 60, 621–644.

    Article  PubMed  Google Scholar 

  • Konen, C. S., & Kastner, S. (2008). Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. Journal of Neuroscience, 28, 8361–8375.

    Article  PubMed  Google Scholar 

  • Konen, C. S., Kleiser, R., Seitz, R. J., & Bremmer, F. (2005). An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans. Experimental Brain Research, 165, 203–216.

    Article  PubMed  Google Scholar 

  • Kowler, E. (2011). Eye movements: the past 25 years. Vision Research, 51, 1457–1483. https://doi.org/10.1016/j.visres.2010.12.014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krauzlis, R. J., & Lisberger, S. G. (1989). A control systems model of smooth pursuit eye movements with realistic emergent properties. Neural Computation, 1, 116–122.

    Article  Google Scholar 

  • Krauzlis, R. J., & Lisberger, S. G. (1994). A model of visually-guided smooth pursuit eye movements based on behavioral observations. Journal of Computational Neuroscience, 1, 265–283.

    Article  PubMed  Google Scholar 

  • Laurentius A (1599) A discourse of the Preservation of the Sight: of Melancholike Diseases; of Rheumes, and of Old Age. Translated by Surphlet, R. (facsimile edition 1938). Oxford University Press, London.

    Google Scholar 

  • Leigh, R. J., & Zee, D. S. (2015). The neurology of eye movements. New York: Oxford University Press.

    Book  Google Scholar 

  • Lencer, R., Nagel, M., Sprenger, A., Zapf, S., Erdmann, C., Heide, W., Binkofski, F. (2004). Cortical mechanisms of smooth pursuit eye movements with target blanking. An fMRI study. Eur J Neurosci, 19, 1430–1436.

    Article  PubMed  Google Scholar 

  • Lencer, R., Reilly, J. L., Harris, M. S., Sprenger, A., Keshavan, M. S., & Sweeney, J. A. (2010). Sensorimotor transformation deficits for smooth pursuit in first-episode affective psychoses and schizophrenia. Biological Psychiatry, 67, 217–223. https://doi.org/10.1016/j.biopsych.2009.08.005.

    Article  PubMed  Google Scholar 

  • Lencer, R., Sprenger, A., Harris, M. S., Reilly, J. L., Keshavan, M. S., & Sweeney, J. A. (2008). Effects of second-generation antipsychotic medication on smooth pursuit performance in antipsychotic-naive schizophrenia. Archives of General Psychiatry, 65, 1146–1154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lencer, R., & Trillenberg, P. (2008). Neurophysiology and neuroanatomy of smooth pursuit in humans. Brain and Cognition, 68, 219–228.

    Article  PubMed  Google Scholar 

  • Lencer, R. M., & Clarke, A. H. (1998). Influence of optokinetic and vestibular stimuli on the performance of smooth pursuit eye movements: implications for a clinical test. Acta Oto-Laryngologica, 118, 161–169.

    Article  PubMed  Google Scholar 

  • Levine, M. S., & Lackner, J. R. (1979). Some sensory and motor factors influencing the control and appreciation of eye and limb position. Experimental Brain Research, 36, 275–283.

    Article  PubMed  Google Scholar 

  • Lindner, A., Haarmeier, T., Erb, M., Grodd, W., & Thier, P. (2006). Cerebrocerebellar circuits for the perceptual cancellation of eye-movement-induced retinal image motion. Journal of Cognitive Neuroscience, 18, 1899–1912.

    Article  PubMed  Google Scholar 

  • MacAvoy, M. G., Gottlieb, J. P., & Bruce, C. J. (1991). Smooth-pursuit eye movement representation in the primate frontal eye field. Cerebral Cortex, 1, 95–102.

    Article  PubMed  Google Scholar 

  • Maunsell, J. H., & Van Essen, D. C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology, 49, 1127–1147.

    Article  PubMed  Google Scholar 

  • Meyer, C. H., Lasker, A. G., & Robinson, D. A. (1985). The upper limit of human smooth pursuit velocity. Vision Research, 25, 561–563.

    Article  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research. Brain Research Reviews, 31, 236–250.

    Article  PubMed  Google Scholar 

  • Nagel, M., Sprenger, A., Hohagen, F., Binkofski, F., & Lencer, R. (2008). Cortical mechanisms of retinal and extraretinal smooth pursuit eye movements to different target velocities. Neuroimage, 41, 483–492.

    Article  PubMed  Google Scholar 

  • Nagel, M., Sprenger, A., Zapf, S., et al. (2006). Parametric modulation of cortical activation during smooth pursuit with and without target blanking. an fMRI study. Neuroimage, 29, 1319–1325.

    Article  PubMed  Google Scholar 

  • Nitschke, M. F., Binkofski, F., Buccino, G., et al. (2004). Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study. Human Brain Mapping, 22, 155–164. https://doi.org/10.1002/hbm.20025.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Driscoll, G. A., Strakowski, S. M., Alpert, N. M., Matthysse, S. W., Rauch, S. L., Levy, D. L., Holzman, P. S. (1998). Differences in cerebral activation during smooth pursuit and saccadic eye movements using positron-emission tomography. Biological Psychiatry, 44, 685–689.

    Article  PubMed  Google Scholar 

  • O’Driscoll, G. A., Wolff, A. L., Benkelfat, C., Florencio, P. S., Lal, S., & Evans, A. C. (2000). Functional neuroanatomy of smooth pursuit and predictive saccades. NeuroReport, 11, 1335–1340.

    Article  PubMed  Google Scholar 

  • Ohlendorf, S., Kimmig, H., Glauche, V., & Haller, S. (2007). Gaze pursuit, ‘attention pursuit’ and their effects on cortical activations. European Journal of Neuroscience, 26, 2096–2108.

    Article  Google Scholar 

  • Ohlendorf, S., Sprenger, A., Speck, O., Haller, S., & Kimmig, H. (2008). Optic flow stimuli in and near the visual field centre: a group FMRI study of motion sensitive regions. PLoS ONE, 3, e4043.

    Article  PubMed  PubMed Central  Google Scholar 

  • Page, W. K., & Duffy, C. J. (2003). Heading representation in MST: sensory interactions and population encoding. Journal of Neurophysiology, 89, 1994–2013.

    Article  PubMed  Google Scholar 

  • Petit, L., Clark, V. P., Ingeholm, J., & Haxby, J. V. (1997). Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. Journal of Neurophysiology, 77, 3386–3390.

    Article  PubMed  Google Scholar 

  • Rashbass, C. (1961). The relationship between saccadic and smooth tracking eye movements. Journal of Physiology, 159, 326–338.

    Article  Google Scholar 

  • Richter, L., Trillenberg, P., Schweikard, A., & Schlaefer, A. (2013). Stimulus intensity for hand held and robotic transcranial magnetic stimulation. Brain Stimul, 6, 315–321. https://doi.org/10.1016/j.brs.2012.06.002.

    Article  PubMed  Google Scholar 

  • Robinson, D. A. (1963). A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Transactions on Biomedical Engineering, 10, 137–145.

    PubMed  Google Scholar 

  • Robinson, D. A. (1965). The mechanics of human smooth pursuit eye movement. Journal of Physiology, 180, 569–591.

    Article  Google Scholar 

  • Robinson, D. A. (1975). A quantitative analysis of extraocular muscle cooperation and squint. Invest Ophthalmol, 14, 801–825.

    PubMed  Google Scholar 

  • Robinson, D. A., Gordon, J. L., & Gordon, S. E. (1986). A model of the smooth pursuit eye movement system. Biological Cybernetics, 55, 43–57.

    Article  PubMed  Google Scholar 

  • Rosano, C., Krisky, C. M., Welling, J. S., Eddy, W. F., Luna, B., Thulborn, K. R., & Sweeney, J. E. (2002). Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation. Cerebral Cortex, 12, 107–115.

    Article  PubMed  Google Scholar 

  • Rybakowski, J. K., Borkowska, A., Czerski, P. M., & Hauser, J. (2001). Dopamine D3 receptor (DRD3) gene polymorphism is associated with the intensity of eye movement disturbances in schizophrenic patients and healthy subjects. Mol Psychiatry, 6, 718–724.

    Article  PubMed  Google Scholar 

  • Schmechtig, A., Vassos, E., Kumari, V., et al. (2010). Association of Neuregulin 1 rs3924999 genotype with antisaccades and smooth pursuit eye movements. Genes Brain Behav, 9, 621–627. https://doi.org/10.1111/j.1601-183X.2010.00594.x.

    Article  PubMed  Google Scholar 

  • Schmid, A., Rees, G., Frith, C., & Barnes, G. (2001). An fMRI study of anticipation and learning of smooth pursuit eye movements in humans. NeuroReport, 12, 1409–1414.

    Article  PubMed  Google Scholar 

  • Sharpe, J. A. (2008). Neurophysiology and neuroanatomy of smooth pursuit: lesion studies. Brain and Cognition, 68, 241–254.

    Article  PubMed  Google Scholar 

  • Shibata, T., Tabata, H., Schaal, S., & Kawato, M. (2005). A model of smooth pursuit in primates based on learning the target dynamics. Neural Netw, 18, 213–224.

    Article  PubMed  Google Scholar 

  • Smyrnis, N., Kattoulas, E., Stefanis, N. C., Avramopoulos, D., Stefanis, C. N., & Evdokimidis, I. (2011). Schizophrenia-related neuregulin-1 single-nucleotide polymorphisms lead to deficient smooth eye pursuit in a large sample of young men. Schizophrenia Bulletin, 37, 822–831. https://doi.org/10.1093/schbul/sbp150.

    Article  PubMed  Google Scholar 

  • Sprenger, A., Trillenberg, P., Pohlmann, J., Herold, K., Lencer, R., & Helmchen, C. (2011). The role of prediction and anticipation on age-related effects on smooth pursuit eye movements. Annals of the New York Academy of Sciences, 1233, 168–176. https://doi.org/10.1111/j.1749-6632.2011.06114.x.

    Article  PubMed  Google Scholar 

  • Sprenger, A., Wojak, J. F., Jandl, N. M., Hertel, S., & Helmchen, C. (2014). Predictive mechanisms improve the vestibulo-ocular reflex in patients with bilateral vestibular failure. Journal of Neurology, 261, 628–631. https://doi.org/10.1007/s00415-014-7276-0.

    Article  PubMed  Google Scholar 

  • Sprenger, A., Zils, E., Stritzke, G., Kruger, A., Rambold, H., & Helmchen, C. (2006). Do predictive mechanisms improve the angular vestibulo-ocular reflex in vestibular neuritis? Audiol Neurootol, 11, 53–58. https://doi.org/10.1159/000088926.

    Article  PubMed  Google Scholar 

  • Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2012). Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage, 59, 1560–1570. https://doi.org/10.1016/j.neuroimage.2011.08.065.

    Article  PubMed  Google Scholar 

  • Takarae, Y., Minshew, N. J., Luna, B., Krisky, C. M., & Sweeney, J. A. (2004). Pursuit eye movement deficits in autism. Brain, 127, 2584–2594.

    Article  PubMed  Google Scholar 

  • Talbot, S. A., & Marshall, W. H. (1941). Physiological Studies on Neural Mechanisms of Visual Localization and Discrimination*. American Journal of Ophthalmology American Journal of Ophthalmology, 24, 1255–1264.

    Article  Google Scholar 

  • Ter Braak, J. W. G. (1936). Untersuchungen über optokinetischen Nystagmus. Archives Neerlandaises de Physiologie de l’homme et des animaux, 21, 309–376.

    Google Scholar 

  • Thaker, G. K., Wonodi, I., Avila, M. T., Hong, L. E., & Stine, O. C. (2004). Catechol O-methyltransferase polymorphism and eye tracking in schizophrenia: a preliminary report. American Journal of Psychiatry, 161, 2320–2322.

    Article  Google Scholar 

  • Thier, P., & Ilg, U. J. (2005). The neural basis of smooth-pursuit eye movements. Current Opinion in Neurobiology, 15, 645–652.

    Article  PubMed  Google Scholar 

  • Trenner MU, Fahle M, Fasold O, Heekeren HR, Villringer A, Wenzel R (2007) Human cortical areas involved in sustaining perceptual stability during smooth pursuit eye movements. Hum Brain Mapp.

    Google Scholar 

  • Trillenberg, P., Shelhamer, M., Roberts, D. C., & Zee, D. S. (2003). Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex. Experimental Brain Research, 148, 158–165. https://doi.org/10.1007/s00221-002-1285-4.

    Article  PubMed  Google Scholar 

  • Trillenberg, P., Zee, D. S., & Shelhamer, M. (2002). On the distribution of fast-phase intervals in optokinetic and vestibular nystagmus. Biol Cybern Biological Cybernetics, 87, 68–78.

    Article  PubMed  Google Scholar 

  • Valmaggia, C., Proudlock, F., & Gottlob, I. (2005). Look and stare optokinetic nystagmus in healthy subjects and in patients with no measurable binocularity. A prospective study. Klin Monatsbl Augenheilkd, 222, 196–201.

    Article  PubMed  Google Scholar 

  • van Beers, R. J., Wolpert, D. M., & Haggard, P. (2001). Sensorimotor integration compensates for visual localization errors during smooth pursuit eye movements. Journal of Neurophysiology, 85, 1914–1922.

    Article  PubMed  Google Scholar 

  • van den Berg, A. V. (1988). Human smooth pursuit during transient perturbations of predictable and unpredictable target movement. Experimental Brain Research, 72, 95–108.

    Article  PubMed  Google Scholar 

  • van den Berg, A. V., & Collewijn, H. (1987). Voluntary smooth eye movements with foveally stabilized targets. Experimental Brain Research, 68, 195–204.

    Article  PubMed  Google Scholar 

  • Van Gelder, P., Lebedev, S., & Tsui, W. H. (1997). Peak velocities of visually and nonvisually guided saccades in smooth-pursuit and saccadic tasks. Experimental Brain Research, 116, 201–215.

    Article  PubMed  Google Scholar 

  • Waddington, J., & Harris, C. M. (2012). Human optokinetic nystagmus: a stochastic analysis. J Vis, 12, 5. https://doi.org/10.1167/12.12.5.

    Article  PubMed  Google Scholar 

  • Waddington, J., & Harris, C. M. (2013). The distribution of quick phase interval durations in human optokinetic nystagmus. Exp Brain Res Experimental Brain Research, 224, 179–187.

    PubMed  Google Scholar 

  • Wonodi, I., Hong, L. E., Stine, O. C., et al. (2009). Dopamine transporter polymorphism modulates oculomotor function and DAT1 mRNA expression in schizophrenia. Am J Med Genet B Neuropsychiatr Genet, 150B, 282–289.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasui S, Young LR (1975) Perceived visual motion as effective stimulus to pursuit eye movement system. Science (New York, N.Y.) 190:906–908.

    Google Scholar 

  • Young LR, Forster JD, van Houtte N (1968) A revised stochastic sampled data model for eye tracking movements. In: University Conference on Manual Control, vol Fourth Ann NASA. NASA, University of Michigan, Ann Arbor, Michigan.

    Google Scholar 

  • Zeki, S. M. (1969). Representation of central visual fields in prestriate cortex of monkey. Brain Research, 14, 271–291.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekka Lencer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lencer, R., Sprenger, A., Trillenberg, P. (2019). Smooth Eye Movements in Humans: Smooth Pursuit, Optokinetic Nystagmus and Vestibular Ocular Reflex. In: Klein, C., Ettinger, U. (eds) Eye Movement Research. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-20085-5_4

Download citation

Publish with us

Policies and ethics