Skip to main content
Log in

A Robust Method for Detection of Linear and Nonlinear Interactions: Application to Renal Blood Flow Dynamics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

We have developed a method that can identify switching dynamics in time series, termed the improved annealed competition of experts (IACE) algorithm.6 In this paper, we extend the approach and use it for detection of linear and nonlinear interactions, by employing histograms showing the frequency of switching modes obtained from the IACE, then examining time-frequency spectra. This extended approach is termed Histogram of improved annealed competition of experts—time frequency (HIACE-TF). The hypothesis is that frequent switching dynamics in HIACE-TF results are due to interactions between different dynamic components. To validate this assertion, we used both simulation examples as well as application to renal blood flow data. We compared simulation results to a time-phase bispectrum (TPB) approach,16 which can also be used to detect time-varying quadratic phase coupling between various components. We found that the HIACE-TF approach is more accurate than the TPB in detecting interactions, and remains accurate for signal-to-noise ratios as low as 15 dB. With all 10 data sets, comprised of volumetric renal blood flow data, we also validated the feasibility of the HIACE-TF approach in detecting nonlinear interactions between the two mechanisms responsible for renal autoregulation. Further validation of the HIACE-TF approach was achieved by comparing it to a realistic mathematical model that has the capability to generate either the presence or the absence of nonlinear interactions between two renal autoregulatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

Similar content being viewed by others

REFERENCES

  1. Agarwal, R., and J. Gotman. Adaptive segmentation of electroencephalographic data using a nonlinear energy operator. IEEE Inte. Symp. Circ. Sys., ISCAS' 99, 1999.

  2. Berne R. M., and M. N. Levy. Cardiovascular Physiology, 7th ed. St. Louis, MO, Mosby: 1997.

    Google Scholar 

  3. Charbonnier, S., G. Becq, and L. Biot. On-line segmentation algorithm for continuously monitored data in intensive care units. IEEE Trans. Biomed. Eng. 51:484–492, 2004.

    Article  PubMed  Google Scholar 

  4. Chon, K. H., Y. M. Chen, N. H. Holstein-Rathlou, and V. Z. Marmarelis. Nonlinear system analysis of renal autoregulation in normotensive and hypertensive rats. IEEE Trans. Biomed. Eng. 45:342–353, 1998.

    Article  PubMed  CAS  Google Scholar 

  5. Chon, K. H., N. H. Holstein-Rathlou, D. J. Marsh, and V. Z. Marmarelis. Comparative nonlinear modeling of renal autoregulation in rats: Volterra approach versus artificial neural networks. IEEE Trans. Neural Net. 9:430–435, 1998.

    Article  CAS  Google Scholar 

  6. Chon, K. H., Y. M. Chen, V. Z. Marmarelis, D. J. Marsh, and N. H. Holstein-Rathlou. Detection of interactions between myogenic and TGF mechanisms using nonlinear analysis. Am. J. Physiol. Renal Physiol. 267:160–173, 1994

    Google Scholar 

  7. Chon, K. H., R. Raghavan, Y. M. Chen, D. J. Marsh, and K. P. Yip. Interactions of TGF-dependent and myogenic oscillations in tubular pressure. Am. J. Physiol. Renal Physiol. 288:F298–307, 2005.

    Article  PubMed  CAS  Google Scholar 

  8. Feng, L., K. H. Ju, and K. H. Chon. A method for segmentation of switching dynamic modes in time series. IEEE Trans. Sys. Man and Cybern., Part B 35:1058–1064, 2005.

    Article  Google Scholar 

  9. Fraser, A. M., and H. L. Swinney. Independent coordinates for strange attractors from mutual information. Phys. Rev. A. 33:1134–1140, 1986.

    Article  PubMed  Google Scholar 

  10. Gonzalez-Fernandez, J. M., and G.B. Ermentrout. On the origin and dynamics of the vasomotion of small arteris. Math Biosci 240:127–167, 1994.

    Article  Google Scholar 

  11. Guyton A. C. Human Physiology and Mechanisms of Disease, 4th ed. Philadelphia, PA: Saunders, 1987

    Google Scholar 

  12. Haykin S. Neural Networks. A Comprehensive Foundation, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1999.

    Google Scholar 

  13. Hively, L. M., V. A. Ptrotopopescu, and P. C. Gailey. Timely detection of dynamical change in scalp EEG signals. Chaos. 10:864–875, 2000.

    Article  PubMed  Google Scholar 

  14. Holstein-Rathlou, N. H., and D. J. Marsh. A dynamic model of the tubuloglomerular feedback mechanism. Am. J. Physiol. Renal Physiol. 258:1448–1459, 1990

    Google Scholar 

  15. Holstein-Rathlou, N. H., A. J. Wagner, and D. J. Marsh. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats. Am. J. Physiol. Renal Physiol. 260:53–68, 1991

    Google Scholar 

  16. Jamsek, J., A. Stefanovska, P. V. McClintock, and I. A. Khovanov. Time-phase bispectral analysis. Phys. Rev. E 68:016–201, 2003.

    Google Scholar 

  17. Kennel M. B., R. Brown, and H. D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A. 45:3403–3411, 1992.

    Article  PubMed  Google Scholar 

  18. Kim, Y. C., and E. J. Powers. Digital bispectral analysis of self-excited fluctuation spectra. Phys. Fluids 21:1452–1453, 1978.

    Article  Google Scholar 

  19. Kohlmorgen, J., K.-R. Müller, J. Rittweger, and K. Pawelzik. Identification of nonstationary dynamics in physiological recordings. Biol. Cybern. 83:73–84, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Marsh, D. J., O. V. Sosnovtseva, K. H. Chon, and N. H. Holstein-Rathlou. Nonlinear interactions in renal blood flow regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288(5):R1143–1159, 2005.

    PubMed  CAS  Google Scholar 

  21. Moody J., and C. Derken. Fast leaning in networks of locally-tuned processing units. Neural. Comput. 1:281–294, 1989.

    Article  Google Scholar 

  22. Nikias, C. L., and A. P. Petropulu . Higher-order Spectra Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1993.

    Google Scholar 

  23. Penny, W. D., and S. J. Roberts. Dynamic models for nonstationary signal segmentation. Comput. and Biomed. Res. 32:483–502, 1999.

    CAS  Google Scholar 

  24. Raghavan, R., K. P. Yip, D. J. Marsh, and K. H. Chon. Presence of interactions between TGF-dependent and myogenic oscillation in tubular pressure and whole kidney blood flow in both normotensive and hypertensive rats. Am. J. Physiol. Renal Physiol. 59:F719–F731, 2006

    Google Scholar 

  25. Rose, K. Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proc. IEEE 86:2210–2239, 1998

    Article  Google Scholar 

  26. Torres, M. E., and L. G. Gamero. Relative complexity changes in time series using information measures. Physica A. 286:457–473, 2000.

    Article  Google Scholar 

  27. Ueda N., and R. Nakano. Deterministic annealing EM algorithm. Neural Net. 11:271–282, 1998.

    Article  Google Scholar 

  28. Ursino, M. A mathematical model of overall cerebral blood flow regulation in the rat. IEEE Trans. Biomed. Eng. 38:795–807, 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Wendling, F., J. J. Bellanger, J. M. Badier, and J. L. Coatrieux. Extraction of spatio-temporal signatures from depth EEG seizure signals based on objective matching in warped vectorial observations. IEEE Trans. Biomed. Eng. 43:990–1000, 1996.

    Article  PubMed  CAS  Google Scholar 

  30. Xu, L., and A. Krzyzak. Rival penzlized competitive learning for clustering analysis, RBF Net, and Curve Detection. IEEE Trans. Neural. Net. 4:636–649, 1993.

    Article  CAS  Google Scholar 

  31. Zou, R., W. A. Cupples, K. P. Yip, N. H. Holstein-Rathlou, and K. H. Chon. Time-varying properties of renal autoregulatory mechanisms. IEEE Trans. Biomed. Eng. 49:1112–11120, 2002.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported in part by grants from NIH HL69629 and EB3508.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki H. Chon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, L., Siu, K., Moore, L.C. et al. A Robust Method for Detection of Linear and Nonlinear Interactions: Application to Renal Blood Flow Dynamics. Ann Biomed Eng 34, 339–353 (2006). https://doi.org/10.1007/s10439-005-9041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9041-0

Keywords

Navigation