Skip to main content
Log in

Electrophysiological Mapping of Cat Primary Auditory Cortex with Multielectrode Arrays

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The present study employs simultaneous multielectrode recording techniques to study the feline primary auditory cortex (AI) to characterize its functional architecture. High electrode-count microelectrode arrays provide a high spatial and temporal view of AI, but at the potential cost of significant cortical insult. However, the number of electrodes that record single- and multiunit action potentials shown in this study suggest that the implantation of high electrode-count microelectrode arrays allows for reliable recordings from the cortex and that the neurons abutting the electrode tips appear to be spared from significant insult. Using these recordings, we have constructed a functional model of AI that best specifies the distribution of characteristic frequencies (CF's), and have reaffirmed that CF is logarithmically distributed across the cortical surface with a principal CF axis perpendicular to generally straight isofrequency contours. In four cats, we found that the average CF gradient was 0.53 ± 0.08 octave per millimeter. This study demonstrates the use of high electrode count, microelectrode array recordings in characterizing the spatial distribution of acoustic information in the feline AI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.

Similar content being viewed by others

REFERENCES

  1. Arenberg, J. G., S. Furukawa, and J. C. Middlebrooks. Auditory cortical images of tones and noise bands. J. Assoc. Res. Otolaryngol. 1:183–194, 2000.

    Article  PubMed  CAS  Google Scholar 

  2. Battaglia, F. P., G. R. Sutherland, and B. L. McNaughton. Local sensory cues and place cell directionality: Additional evidence of prospective coding in the hippocampus. J. Neurosci. 24:4541–4550, 2004.

    Article  PubMed  CAS  Google Scholar 

  3. Bierer, J. A., and J. C. Middlebrooks. Auditory cortical images of cochlear-implant stimuli: Dependence on electrode configuration. J. Neurophysiol. 87:478–492, 2002.

    PubMed  Google Scholar 

  4. Bonham, B. H., S. W. Cheung, B. Godey, and C. E. Schreiner. Spatial organization of frequency response areas and rate/level functions in the developing AI. J. Neurophysiol. 91:841–854, 2004.

    Article  PubMed  Google Scholar 

  5. Bossetti, C. A., J. M. Carmena, M. A. Nicolelis, and P. D. Wolf. Transmission latencies in a telemetry-linked brain-machine interface. IEEE Trans. Biomed. Eng. 51:919–924, 2004.

    Article  PubMed  Google Scholar 

  6. Campbell, P. K., K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann. A silicon-based, three-dimensional neural interface: Manufacturing processes for an intracortical electrode array. IEEE Trans. Biomed. Eng. 38:758–768, 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Donoghue, J. P. Connecting cortex to machines: Recent advances in brain interfaces. Nat. Neurosci. 5(Suppl):1085–1088, 2002.

    Article  CAS  Google Scholar 

  8. Drake, K. L., K. D. Wise, J. Farraye, D. J. Anderson, and S. L. BeMent. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35:719–732, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Eggermont, J. J., and H. Komiya. Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear. Res. 142:89–101, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. Ehret, G. The auditory cortex. J. Comp. Physiol. A 181:547–557, 1997.

    Article  PubMed  CAS  Google Scholar 

  11. Fay, R. R. Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates, 1988.

    Google Scholar 

  12. Greenwood, D. D. A cochlear frequency-position function for several species–29 years later. J. Acoust. Soc. Am. 87:2592–2605, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Merzenich, M. M., P. L. Knight, and G. L. Roth. Representation of cochlea within primary auditory cortex in the cat. J. Neurophysiol. 38:231–249, 1975.

    PubMed  CAS  Google Scholar 

  14. Miller, A. L., J. G. Arenberg, J. C. Middlebrooks, and B. E. Pfingst. Cochlear implant thresholds: comparison of middle latency responses with psychophysical and cortical-spike-activity thresholds. Hear. Res. 152:55–66, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Phillips, D. P., and D. R. Irvine. Responses of single neurons in physiologically defined area AI of cat cerebral cortex: sensitivity to interaural intensity differences. Hear. Res. 4:299–307, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Phillips, D. P., M. N. Semple, M. B. Calford, and L. M. Kitzes. Level-dependent representation of stimulus frequency in cat primary auditory cortex. Exp. Brain Res. 102:210–226, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Raggio, M. W., and C. E. Schreiner. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency. J. Neurophysiol. 72:2334–2359, 1994.

    PubMed  CAS  Google Scholar 

  18. Rajan, R., D. R. Irvine, L. Z. Wise, and P. Heil. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J. Comp. Neurol. 338:17–49, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Read, H. L., J. A. Winer, and C. E. Schreiner. Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proc. Natl. Acad. Sci. U.S.A. 98:8042–8047, 2001.

    Article  PubMed  CAS  Google Scholar 

  20. Reale, R. A., and T. J. Imig. Tonotopic organization in auditory cortex of the cat. J. Comp. Neurol. 192:265–291, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Robles, L., and M. A. Ruggero. Mechanics of the mammalian cochlea. Physiol. Rev. 81:1305–1352, 2001.

    PubMed  CAS  Google Scholar 

  22. Rousche, P. J., and R. A. Normann. A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann. Biomed. Eng. 20:413–422, 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Sally, S. L., and J. B. Kelly. Organization of auditory cortex in the albino rat: Sound frequency. J. Neurophysiol. 59:1627–1638, 1988.

    PubMed  CAS  Google Scholar 

  24. Sando, I. The anatomical interrelationships of the cochlear nerve fibers. Acta Otolaryngol. 59:417–436, 1965.

    Article  Google Scholar 

  25. Schmidt, S., K. Horch, and R. Normann. Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. J. Biomed. Mater Res. 27:1393–1399, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Schreiner, C. E. Spatial distribution of responses to simple and complex sounds in the primary auditory cortex. Audiol. Neurootol. 3:104–122, 1998.

    Article  PubMed  CAS  Google Scholar 

  27. Schreiner, C. E., and J. R. Mendelson. Functional topography of cat primary auditory cortex: distribution of integrated excitation. J. Neurophysiol. 64:1442–1459, 1990.

    PubMed  CAS  Google Scholar 

  28. Schreiner, C. E., H. L. Read, and M. L. Sutter. Modular organization of frequency integration in primary auditory cortex. Annu. Rev. Neurosci. 23:501–529, 2000.

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz, A. B. Cortical neural prosthetics. Annu. Rev. Neurosci. 27:487–507, 2004.

    Article  PubMed  CAS  Google Scholar 

  30. Shoham, S., M. R. Fellows, and R. A. Normann. Robust, automatic spike sorting using mixtures of multivariate t-distributions. J. Neurosci. Methods 127:111–122, 2003.

    Article  PubMed  Google Scholar 

  31. Snyder, R. L., J. A. Bierer, and J. C. Middlebrooks. Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. J. Assoc. Res. Otolaryngol. 5:305–322, 2004.

    Article  PubMed  Google Scholar 

  32. Snyder, R. L., and P. A. Leake. Topography of spiral ganglion projections to cochlear nucleus during postnatal development in cats. J. Comp. Neurol. 384:293–311, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Sutter, M. L., and C. E. Schreiner. Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. J. Neurophysiol. 65:1207–1226, 1991.

    PubMed  CAS  Google Scholar 

  34. Szarowski, D. H., M. D. Andersen, S. Retterer, A. J. Spence, M. Isaacson, H. G. Craighead, J. N. Turner, and W. Shain. Brain responses to micro-machined silicon devices. Brain Res. 983:23–35, 2003.

    Article  PubMed  CAS  Google Scholar 

  35. von Bekesy, G. Experiments in Hearing. New York: McGraw-Hill, 1960.

    Google Scholar 

  36. Warren, D. J., E. Fernandez, and R. A. Normann. High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array. Neuroscience 105:19–31, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Yan-Ping Zhang for fabrication of some of the UEAs used in this study and also acknowledge Arun Badi, Brett Dowden, and Scott McFarlane for their discussion on this study. This work was supported by National Institutes of Health Contract N01-DC-1-2108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Normann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Manyam, S.C., Warren, D.J. et al. Electrophysiological Mapping of Cat Primary Auditory Cortex with Multielectrode Arrays. Ann Biomed Eng 34, 300–309 (2006). https://doi.org/10.1007/s10439-005-9037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9037-9

Keywords

Navigation