Skip to main content
Log in

Diffusivity of Ions in Agarose Gels and Intervertebral Disc: Effect of Porosity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The effect of tissue porosity on ion (sodium, potassium, and chloride) diffusivity in agarose gels and porcine intervertebral disc tissues was investigated using an electrical conductivity method. An empirical, constitutive model for diffusivity (D) of solutes in porous fibrous media was proposed: D/D o=exp [−α(r s1/2)β] where r s is the Stokes radius of a solute, κ is the Darcy permeability of the porous medium, D o is the diffusivity in free solution, α and β are two positive parameters whose values depend on material structure. It is found that α=1.25±0.138, β=0.681±0.059 (95% confidence interval, R 2=0.92, n=72) for agarose gels and α=1.29±0.171 and β=0.372±0.088 (95% confidence interval, R 2=0.88, n=86) for porcine annulus fibrosus. The functional relationship between solute diffusivity and tissue deformation was derived. Comparisons of our model prediction with experimental data on diffusion coefficients of macromolecules (proteins, dextrans, polymer beads) in agarose gels in the literature were made. Our results were also compared to the data on ion diffusivity in charged gels and in cartilaginous tissues reported in the literature. There was a good agreement between our model prediction and the data in the literature. The present study provides additional information on solute diffusivity in uncharged gels and charged tissues, and is important for understanding nutritional transport in avascular cartilaginous tissues under different mechanical loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berk, D. A., F. Yuan., M. Leunig., and R. K. Jain. Fluorescence photobleaching with spatial Fourier analysis: Measurement of diffusion in light-scattering media. Biophys. J. 65:2428–2436, 1993.

    Google Scholar 

  2. Bonassar, L. J., A. J. Grodzinsky, E. H. Frank, S. G. Davila, N. R. Bhaktav, and S. B. Trippel. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J. Orthop. Res. 19:11–17, 2001.

    Google Scholar 

  3. Bonassar, L. J., A. J. Grodzinsky, A. Srinivasan., S. G. Davila, and S. B. Trippel. Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage. Arch. Biochem. Biophys. 379:57–63, 2000.

    Google Scholar 

  4. Brady, J. F. Hindered diffusion, In Extended Abstracts, American Institute of Chemical Engineers Annual Meeting, San Francisco, CA, 1994, p.320.

  5. Brinkman, H. C. A calculation of the viscous force exerted by a flowing fluid in a dense swarm of particles. Appl. Sci. Res. A1:27–34, 1947.

    Google Scholar 

  6. Burstein, D., M. L. Gray, A. L. Hartman, R. Gipe., and B. D. Foy. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J. Orthop. Res. 11:465–478, 1993.

    Google Scholar 

  7. Frank, E. H., A. J. Grodzinsky, S. L. Phillips, and P. E. Grimshaw. Physiochemical and bioelectrical determinants of cartilage material properties. In: Biomechanics of Diarthrodial Joints, edited by V. C. Mow, A. Ratcliffe., and S. L-Y. Woo. New York: Springer, 1990, pp. 261–282.

    Google Scholar 

  8. Garcia, A. M., E. H. Frank, P. E. Grimshaw, and A. J. Grodzinsky. Contributions of fluid convection and electrical migration to transport in cartilage: Relevance to loading. Arch. Biochem. Biophys. 333:317–325, 1996.

    Google Scholar 

  9. Grodzinsky, A. J. Electromechanical and physicochemical properties of connective tissue. Crit. Rev. Biomed. Eng. 9:133–199, 1983.

    Google Scholar 

  10. Grodzinsky, A. J., M. E. Levenston, M. Jin., and E. H. Frank. Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2:691–713, 2000.

    Google Scholar 

  11. Gu, W. Y. and M. A. Justiz. Apparatus for measuring the swelling dependent electrical conductivity of charged hydrated soft tissues. J. Biomech. Eng. 124:790–793, 2002.

    Google Scholar 

  12. Gu, W. Y., M. A. Justiz, and H. Yao. Electrical conductivity of lumbar annulus fibrosis: Effects of porosity and fixed charge density. Spine 27:2390–2395, 2002.

    Google Scholar 

  13. Gu, W. Y., W. M. Lai, and V. C. Mow. A mixture theory for charged-hydrated soft tissues containing multi- electrolytes: Passive transport and swelling behaviors. J. Biomech. Eng. 120:169–180, 1998.

    Google Scholar 

  14. Gu, W. Y., and H. Yao. Effects of hydration and fixed charge density on fluid transport in charged hydrated soft tissue. Ann. Biomed. Eng. 31:1162–1170, 2003.

    Google Scholar 

  15. Gu, W. Y., H. Yao., C.-Y. Huang., and H. S. Cheung. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J. Biomech. 36:593–598, 2003.

    Google Scholar 

  16. Hasegawa, I., S. Kuriki., S. Matsuno., and G. Matsumoto. Dependence of electrical conductivity on fixed charge density in articular cartilage. Clin. Orthop. Res. 177:283–288, 1983.

    Google Scholar 

  17. Helfferich, F. Ion Exchange. New York: McGraw Hill, 1962.

    Google Scholar 

  18. Hirota, N., Y. Kumaki., T. Narita., J. P. Gong, and Y. Osada. Effect of charge on protein diffusion in hydrogels. J. Phys. Chem. B 104:9898–9903, 2000.

    Google Scholar 

  19. Horner, H. A., and J. P. Urban. 2001 Volvo award winner in basic science studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26:2543–2549, 2001.

    Google Scholar 

  20. Huyghe, J. M., and J. D. Janssen. Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35:793–802, 1997.

    MATH  Google Scholar 

  21. Johnson, E. M., D. A. Berk, R. K. Jain, and W. M. Deen. Diffusion and partitioning of proteins in charged agarose gels. Biophys. J. 68:1561–1568, 1995.

    Google Scholar 

  22. Johnson, E. M., D. A. Berk, R. K. Jain, and W. M. Deen. Hindered diffusion in agarose gels: Test of effective medium model. Biophys. J. 70:1017–1023, 1996.

    Google Scholar 

  23. Katchalsky, A., and P. F. Curran. Nonequilibrium Thermodynamics in Biophysics. Cambridge, MA: Harvard University Press, 1975.

    Google Scholar 

  24. Koneshan, S., J. C. Rasaiah, R. M. Lynden-Bell, and S. H. Lee. Solvent structure, dynamics, and ion mobility in aqueous solution at 25°C. J. Phys. Chem. 102:4193–4204, 1998.

    Google Scholar 

  25. Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Engng. 113:245–258, 1991.

    Google Scholar 

  26. Lanir, Y., J. Seybold., R. Schneiderman., and J. M. Huyghe. Partition and diffusion of sodium and chloride ions in soft charged foam: The effect of external salt concentration and mechanical deformation. Tissue Eng. 4:365–378, 1998.

    Google Scholar 

  27. Leddy, H. A., and F. Guilak. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann. Biomed. Eng. 31:753–760, 2003.

    Google Scholar 

  28. Levenston, M. E., S. R., Eisenberg. A. J. Grodzinsky. A variational formulation for coupled physicochemical flows during finite deformations of charged porous media. Int. J. Solids Struct. 35:4999–5019, 1998.

    MATH  Google Scholar 

  29. Mackie, J. S., and P. Meares. The diffusion of electrolytes in a cation-exchange resin. I. Theoretical. Proc. R. Soc. London A232:498–509, 1955.

    Google Scholar 

  30. Mansour, J. M., and V. C. Mow. The permeability of articular cartilage under compressive strain and at high pressures. J. Bone Joint Surg. Am. 58:509–516, 1976.

    Google Scholar 

  31. Maroudas, A. Physicochemical properties of cartilage in the light of ion exchange theory. Biophys. J. 8:575–595, 1968.

    Google Scholar 

  32. Maroudas, A. Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheology 12:233–248, 1975.

    Google Scholar 

  33. Maroudas, A. Physicochemical properties of articular cartilage. In: Adult Articular Cartilage, 2nd ed. edited by M. A. R. Freeman. Pitman Medical, 1979, pp. 215–290.

  34. Maroudas, A., R. A. Stockwell, A. Nachemson., and J. Urban. Factors involved in the nutrition of the human lumbar intervertebral disc: Cellularity and diffusion of glucose in vitro. J. Anat. 120:113–130, 1975.

    Google Scholar 

  35. Masaro, L., and X. X. Zhu. Physical models of diffusion for polymer solutions, gels and solids. Prog. Polym. Sci. 24:731–775, 1999.

    Google Scholar 

  36. Mauck, R. L., C. T. Hung, and G. A. Ateshian. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: Implications for articular cartilage biosynthesis and tissue engineering. J. Biomech. Eng. 125:602–614, 2003.

    Google Scholar 

  37. Mow, V. C., C. C. Wang, and C. T. Hung. The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthritis Cartilage. 7:41–58, 1999.

    Google Scholar 

  38. O’Hara, B. P., J. P. Urban, and A. Maroudas. Influence of cyclic loading on the nutrition of articular cartilage. Ann. Rheum. Dis. 49:536–539, 1990.

    Article  Google Scholar 

  39. Phillips, R. J., W. M. Deen, and J. F. Brady. Hindered transport of spherical macromolecules in fibrous membranes and gels. AIChE J. 35:1761–1769, 1989.

    Google Scholar 

  40. Phillips, R. J., W. M. Deen, and J. F. Brady. Hindered transport in fibrous membranes and gels: Effect of solute size and fibrt configuration. J. Coll. Interf. Sci. 139:363–373, 1990.

    Google Scholar 

  41. Pluen, A., P. A. Netti, R. K. Jain, and D. A. Berk. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configuration. Biophys. J. 77:542–552, 1999.

    Article  Google Scholar 

  42. Quinn, T. M., P. Kocian., and J. J. Meister. Static compression is associated with decreased diffusivity of dextrans in cartilage explants. Arch. Biochem. Biophys. 384:327–334, 2000.

    Google Scholar 

  43. Quinn, T. M., V. Morel., and J. J. Meister. Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response. J. Biomech. 34:1463–1469, 2001.

    Google Scholar 

  44. Quinn, T. M., C. Studer., A. J. Grodzinsky, and J. J. Meister. Preservation and analysis of nonequilibrium solute concentration distributions within mechanically compressed cartilage explants. J. Biochem. Biophys. Methods 31:83–95, 2002.

    Google Scholar 

  45. Schepps, J. L., and K. R. Foster. The UHF and microwave dielectric properties of normal and tumour tissues: Variation in dielectric properties with tissue water content. Phys. Med. Biol. 25:1149–1159, 1980.

    Google Scholar 

  46. Torzilli, P. A., T. C. Adams, and R. J. Mis. Transient solute diffusion in articular cartilage. J. Biomech. 20:203–214, 1987.

    Google Scholar 

  47. Urban, J. P. G. Fluid and solute transport in the intervertebral disc. PhD Thesis, London University, 1977.

  48. Urban, J. P., S. Holm., and A. Maroudas. Diffusion of small solutes into the intervertebral disc: As in vivo study. Biorheology 15:203–221, 1978.

    Google Scholar 

  49. Urban, J. P., S. Holm., A. Maroudas., and A. Nachemson. Nutrition of the intervertebral disc: Effect of fluid flow on solute transport. Clin. Orthop. Res. 170:296–302, 1982.

    Google Scholar 

  50. Yao, H., M. A. Justiz, D. Flagler., and W. Y. Gu. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Ann. Biomed. Eng. 30:1234–1241, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yong Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, W.Y., Yao, H., Vega, A.L. et al. Diffusivity of Ions in Agarose Gels and Intervertebral Disc: Effect of Porosity. Ann Biomed Eng 32, 1710–1717 (2004). https://doi.org/10.1007/s10439-004-7823-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-004-7823-4

Navigation