Skip to main content
Log in

Optimal capital structures for private firms

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

This article shows how to construct an optimal capital structure for a private firm. Since the agents who supply the firm’s capital are risk averse, they diversify by holding both debt and equity. This can mitigate, or even eliminate, the classical risk shifting problem. There is a wealth effect since the optimal capital structure, which can involve multiple types of debt, depends on the amount of wealth that each agent contributes to the firm. However, it is shown that the agents’ equity holdings do not depend on the contributed amounts of wealth. Thus the model can produce a wedge between ownership rights and equity cashflow rights. These features are illustrated in a firm with three agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Even among public companies, equityholders are not always dispersed (Holderness 2009, 2010).

  2. The stockholder could also issue similar debt on his or her own, or short some other security that is a perfect substitute for the firm’s debt.

  3. See Pub. 1212 of the U.S. Internal Revenue Service, Guide to Original Issue Discount (OID) Instruments.

  4. Using Wilson (1968), we can write \(W_{i}=\hat{s}_{i}(f(Y),{\lambda })\) , where \(\hat{s}_{i}\) is the ith agent’s sharing rule. To simplify the notation, we use the composite function \(s_{i}=\hat{s}_{i}\circ f\).

  5. For now a is a constant. Later in the paper a is used as a choice variable to re-examine the risk shifting problem within a firm (Green and Talmor 1986).

  6. For papers that study endogenous firm control, see Zender (1991), Bennedsen and Wolfenzon (2000), and Aslan and Kumar (2012) .

  7. In the terminology of Berkovitch and Israel (1996), this agent has absolute control.

References

  • Allen, F., Gale, D.: Optimal security design. Rev Financ Stud 1, 229–263 (1988)

    Article  Google Scholar 

  • Allen, F., Gale, D.: Arbitrage, short sales, and financial innovation. Econometrica 59, 1041–1068 (1991)

    Article  Google Scholar 

  • Allen, F., Gale, D.: Financial innovation and risk sharing: MIT Press: Cambridge (1994)

  • Ang, J.: On the theory of finance for privately held firms. J Entrep Financ 1, 185–203 (1992)

    Google Scholar 

  • Ang, J., Cole, R., Lawson, D.: The role of owner in capital structure decisions: an analysis of single-owner corporations. J Entrep Financ 14, 1–36 (2010)

    Google Scholar 

  • Asker, J., Farre-Mensa, J., Ljungqvist, A.: What Do Private Firms Look Like? Working paper, NYU Stern School of Business (2011)

  • Aslan, H., Kumar, P.: Strategic ownership structure and the cost of debt. Rev Financ Stud 25, 2257–2299 (2012)

    Article  Google Scholar 

  • Baker, M., Wurgler, J.: Market timing and capital structure. J Financ 57, 1–32 (2002)

    Article  Google Scholar 

  • Bathala, C., Bowlin, O., Dukes, W.: Sources of capital and debt in small firms. J Entrep Financ 9, 29–52 (2004)

    Google Scholar 

  • Bennedsen, M., Wolfenzon, D.: The balance of power in closely held corporations. J Financ Econ 58, 113–139 (2000)

    Article  Google Scholar 

  • Berk, J., Stanton, R., Zechner, J.: Human capital, bankruptcy, and capital structure. J Financ 65, 891–926 (2010)

    Article  Google Scholar 

  • Berkovitch, E., Israel, R.: The design of internal control and capital structure. Rev Financ Stud 9, 209–240 (1996)

    Article  Google Scholar 

  • Brav, O.: Access to capital, capital structure, and the funding of the firm. J Financ 64, 263–308 (2009)

    Article  Google Scholar 

  • Cole, R.: What do we know about the capital structure of privately held U.S. firms? Evidence from the surveys of small business finance. Financ Manage 42, 777–813 (2013)

  • Cole, R., Sokolyk, T.: How Do Start-Up Firms Finance Their Assets? Evidence from the Kauffman Firm Surveys. Working paper, DePaul University (2013)

  • Décamps, J., Djembissi, B.: Switching to a poor business activity: optimal capital structure, agency costs, and covenant rules. Ann Financ 3, 389–409 (2007)

    Article  Google Scholar 

  • Demski, J.: Rational choice of accounting method for a class of partnerships. J Account Res 11, 176–190 (1973)

    Article  Google Scholar 

  • Dybvig, P., Ross, S.: Tax clienteles and asset pricing. J Financ 41, 751–762 (1986)

    Google Scholar 

  • Fellingham, J., Wolfson, M.: Taxes and risk sharing. Account Rev 60, 10–17 (1985)

    Google Scholar 

  • González de Lara, Y.: Risk Sharing as a Determinant of Capital Structure: Internal Financing, Debt, and (Outside) Equity. Working paper, University of Alicante, Spain (2004)

  • Graham, J.: Taxes and corporate finance: a review. Rev Financ Stud 16, 1075–1129 (2003)

    Article  Google Scholar 

  • Green, R., Talmor, E.: Asset substitution and the agency costs of debt financing. J Bank Financ 10, 391–399 (1986)

    Article  Google Scholar 

  • Hackbarth, D., Hennessy, C., Leland, H.: Can the trade-off theory explain debt structure? Rev Financ Stud 20, 1389–1428 (2007)

    Article  Google Scholar 

  • Harris, M., Raviv, A.: The design of securities. J Financ Econ 24, 255–287 (1989)

    Article  Google Scholar 

  • Hennessy, C., Whited, T.: Debt dynamics. J Financ 60, 1129–1165 (2005)

    Article  Google Scholar 

  • Herranz, N., Krasa, S., Villamil, A.: Small firms in the SSBF. Ann Financ 5, 341–359 (2009)

    Article  Google Scholar 

  • Herranz, N., Krasa, S., Villamil, A.: Entrepreneurs, risk aversion, and dynamic firms. J Polit Econ 123, 1133–1176 (2015)

    Article  Google Scholar 

  • Holderness, C.: The myth of diffuse ownership in the United States. Rev Financ Stud 22, 1377–1408 (2009)

    Article  Google Scholar 

  • Holderness, C.: Blockholders are more common in the United States than you might think. J Appl Corp Financ 22, 75–85 (2010)

    Article  Google Scholar 

  • Hovakimian, A., Opler, T., Titman, S.: The debt-equity choice. J Financ Quant Anal 36, 1–24 (2001)

    Article  Google Scholar 

  • Huang, R., Ritter, J.: Testing theories of capital structure and estimating the speed of adjustment. J Financ Quant Anal 44, 237–271 (2009)

    Article  Google Scholar 

  • Jensen, M., Meckling, W.: The theory of the firm: managerial behavior, agency costs, and ownership structure. J Financ Econ 3, 305–360 (1976)

    Article  Google Scholar 

  • Jiang, W., Li, K., Shao, P.: When shareholders are creditors: effects of the simultaneous holding of equity and debt by non-commercial banking institutions. Rev Financ Stud 23, 3595–3637 (2010)

    Article  Google Scholar 

  • Korteweg, A.: The net benefits to leverage. J Financ 65, 2137–2170 (2010)

    Article  Google Scholar 

  • Kraus, A., Litzenberger, R.: A state-preference model of optimal financial leverage. J Financ 28, 911–922 (1973)

    Article  Google Scholar 

  • Laeven, L., Levine, R.: Complex ownership structures and corporate valuations. Rev Financ Stud 21, 579–604 (2008)

    Article  Google Scholar 

  • Leland, H., Pyle, D.: Informational asymmetries, financial structure, and financial intermediation. J Financ 32, 371–387 (1977)

    Article  Google Scholar 

  • Lin, C., Ma, Y., Malatesta, P., Xuan, Y.: Ownership structure and the cost of corporate borrowing. J Financ Econ 100, 1–23 (2011)

    Article  Google Scholar 

  • Madan, D., Soubra, B.: Design and marketing of financial products. Rev Financ Stud 4, 361–384 (1991)

    Article  Google Scholar 

  • Matthews, C., Vasudevan, D., Barton, S., Apana, R.: Capital structure decision-making in privately held firms: beyond the finance paradigm. Fam Bus Rev 7, 349–367 (1994)

    Article  Google Scholar 

  • McCumber, W.: The Capital Structure Of Private Firms. Working paper, Louisiana Tech University (2014)

  • Modigliani, F., Miller, M.: The cost of capital, corporation finance, and the theory of investment. Am Econ Rev 48, 261–297 (1958)

    Google Scholar 

  • Myers, S.: Determinants of corporate borrowing. J Financ Econ 5, 147–175 (1977)

    Article  Google Scholar 

  • Nagar, V., Petroni, K., Wolfenzon, D.: Governance problems in closely held corporations. J Financ Quant Anal 46, 943–966 (2011)

    Article  Google Scholar 

  • Pesendorfer, W.: Financial innovation in a general equilibrium model. J Econ Theory 65, 79–116 (1995)

    Article  Google Scholar 

  • Rauh, J., Sufi, A.: Capital structure and debt structure. Rev Financ Stud 23, 4242–4280 (2010)

    Article  Google Scholar 

  • Robb, A., Robinson, D.: The capital structure decisions of new firms. Rev Financ Stud 14, 153–179 (2014)

    Article  Google Scholar 

  • Ross, S.: Compensation, incentives, and the duality of risk aversion and riskiness. J Financ 59, 207–225 (2004)

    Article  Google Scholar 

  • Verrecchia, R.: On the choice of accounting method for partnerships. J Account Res 16, 150–168 (1978)

    Article  Google Scholar 

  • Villalonga, B., Amit, R.: How are U.S. family firms controlled? Rev Financ Stud 22, 3047–3091 (2009)

    Article  Google Scholar 

  • Wilson, R.: The theory of syndicates. Econometrica 36, 119–132 (1968)

    Article  Google Scholar 

  • Zechner, J.: Tax clienteles and optimal capital structure under uncertainty. J Bus 63, 465–491 (1990)

    Article  Google Scholar 

  • Zender, J.: Optimal financial instruments. J Financ 46, 1645–1663 (1991)

    Article  Google Scholar 

  • Zingales, L.: In search of new foundations. J Financ 55, 1623–1653 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel M. Vanden.

Appendix

Appendix

Proof of Proposition 1

Note that \(K_{1}\) and \(K_{2}\) in (13)–(14) and D in (11) depend on \(\{\lambda _{i}\}_{i=1}^{3}\), which in turn depend on the initial wealth levels \( \{W_{0i}\}_{i=1}^{3}\). For some parameter values and initial wealth levels we have \(D>0\), while for other parameter values and initial wealth levels we have \(D\le 0\). For each sign of D, \(K_{1}\) and \(K_{2}\) may satisfy either \(K_{1}\le K_{2}\le 0\), \(K_{1}\le 0<K_{2}\), or \(0<K_{1}\le K_{2}\). Thus to prove the proposition, we must analyze six cases.

The agents’ personal loan positions are described first. The ith agent’s loan position is \(d_{i}({\lambda })=\) \(m_{i}({\lambda })/g_{0}( {\lambda })\), where \(m_{i}({\lambda })\) is given below and \( g_{0}({\lambda })\) is the after-tax payoff on the loan. From the discussion in Sect. 2.5, \(g_{0}({\lambda })=P_{r}+\left( 1-t_{d}\right) \left[ 1-P_{r}\right] \), where \(P_{r}\) is from (8). Define the expressions \(w_{i}({\lambda })\) for \( i=1,2,3\) as

$$\begin{aligned} w_{1}({\lambda })= & {} \rho \log \left[ \frac{\lambda _{1}}{\varDelta } \right] -\frac{\rho \left[ 1-\left( 1-t_{e}\right) \left( 1-t_{c}\right) \right] P_{e}}{\rho +\tau +\nu }, \\ w_{2}({\lambda })= & {} \phi \log \left[ \frac{\lambda _{2}}{\varDelta } \right] -\frac{\tau \left[ 1-\left( 1-t_{e}\right) \left( 1-t_{c}\right) \right] P_{e}}{\rho +\tau +\nu }, \\ w_{3}({\lambda })= & {} \alpha \log \left[ \frac{\lambda _{3}}{\varDelta } \right] -\frac{\nu \left[ 1-\left( 1-t_{e}\right) \left( 1-t_{c}\right) \right] P_{e}}{\rho +\tau +\nu }, \end{aligned}$$

where \(\varDelta \) is from (9). First consider \( K_{1}\le K_{2}\le 0\). In this case if \(D>0\), the expressions for \(\{m_{i}( {\lambda })\}_{i=1}^{3}\) are

$$\begin{aligned} m_{1}({\lambda })= & {} w_{1}({\lambda })-K_{1}\left[ \frac{\rho \left( 1-t_{d}\right) }{\rho +\tau +\alpha }-\frac{\rho \left( 1-t_{d}\right) }{\rho +\phi +\alpha }\right] -K_{2}\left[ \frac{\rho \left( 1-t_{d}\right) }{\rho +\tau +\nu }-\frac{\rho \left( 1-t_{d}\right) }{\rho +\tau +\alpha }\right] , \\ m_{2}({\lambda })= & {} w_{2}({\lambda })-K_{1}\left[ \frac{\tau \left( 1-t_{d}\right) }{\rho +\tau +\alpha }-\frac{\phi \left( 1-t_{d}\right) }{\rho +\phi +\alpha }\right] -K_{2}\left[ \frac{\tau \left( 1-t_{d}\right) }{\rho +\tau +\nu }-\frac{\tau \left( 1-t_{d}\right) }{\rho +\tau +\alpha }\right] , \\ m_{3}({\lambda })= & {} w_{3}({\lambda })-K_{1}\left[ \frac{ \alpha \left( 1-t_{d}\right) }{\rho +\tau +\alpha }-\frac{\alpha \left( 1-t_{d}\right) }{\rho +\phi +\alpha }\right] -K_{2}\left[ \frac{\nu \left( 1-t_{d}\right) }{\rho +\tau +\nu }-\frac{\alpha \left( 1-t_{d}\right) }{\rho +\tau +\alpha }\right] . \end{aligned}$$

If instead \(D\le 0\), the expressions for \(\{m_{i}({\lambda })\}_{i=1}^{3}\) are

$$\begin{aligned} m_{1}({\lambda })= & {} w_{1}({\lambda })-K_{1}\left[ \frac{\rho \left( 1-t_{d}\right) }{\rho +\phi +\nu }-\frac{\rho \left( 1-t_{d}\right) }{ \rho +\phi +\alpha }\right] -K_{2}\left[ \frac{\rho \left( 1-t_{d}\right) }{ \rho +\tau +\nu }-\frac{\rho \left( 1-t_{d}\right) }{\rho +\phi +\nu }\right] , \\ m_{2}({\lambda })= & {} w_{2}({\lambda })-K_{1}\left[ \frac{\phi \left( 1-t_{d}\right) }{\rho +\phi +\nu }-\frac{\phi \left( 1-t_{d}\right) }{ \rho +\phi +\alpha }\right] -K_{2}\left[ \frac{\tau \left( 1-t_{d}\right) }{ \rho +\tau +\nu }-\frac{\phi \left( 1-t_{d}\right) }{\rho +\phi +\nu }\right] , \\ m_{3}({\lambda })= & {} w_{3}({\lambda })-K_{1}\left[ \frac{\nu \left( 1-t_{d}\right) }{\rho +\phi +\nu }-\frac{\alpha \left( 1-t_{d}\right) }{\rho +\phi +\alpha }\right] -K_{2}\left[ \frac{\nu \left( 1-t_{d}\right) }{ \rho +\tau +\nu }-\frac{\nu \left( 1-t_{d}\right) }{\rho +\phi +\nu }\right] . \end{aligned}$$

Next consider \(K_{1}\le 0<K_{2}\). If \(D>0\), the expressions for \( \{m_{i}({\lambda })\}_{i=1}^{3}\) are

$$\begin{aligned} m_{1}({\lambda })= & {} w_{1}({\lambda })-\frac{\rho t_{d}P_{s}}{ \rho +\tau +\alpha }-K_{1}\left[ \frac{\rho \left( 1-t_{d}\right) }{\rho +\tau +\alpha }-\frac{\rho \left( 1-t_{d}\right) }{\rho +\phi +\alpha } \right] , \\ m_{2}({\lambda })= & {} w_{2}({\lambda })-\frac{\tau t_{d}P_{s}}{ \rho +\tau +\alpha }-K_{1}\left[ \frac{\tau \left( 1-t_{d}\right) }{\rho +\tau +\alpha }-\frac{\phi \left( 1-t_{d}\right) }{\rho +\phi +\alpha } \right] , \\ m_{3}({\lambda })= & {} w_{3}({\lambda })-\frac{\alpha t_{d}P_{s} }{\rho +\tau +\alpha }-K_{1}\left[ \frac{\alpha \left( 1-t_{d}\right) }{\rho +\tau +\alpha }-\frac{\alpha \left( 1-t_{d}\right) }{\rho +\phi +\alpha } \right] . \end{aligned}$$

If instead \(D\le 0\), the expressions for \(\{m_{i}({\lambda })\}_{i=1}^{3}\) are

$$\begin{aligned} m_{1}({\lambda })= & {} w_{1}({\lambda })-\frac{\rho t_{d}P_{s}}{ \rho +\phi +\nu }-K_{1}\left[ \frac{\rho \left( 1-t_{d}\right) }{\rho +\phi +\nu }-\frac{\rho \left( 1-t_{d}\right) }{\rho +\phi +\alpha }\right] , \\ m_{2}({\lambda })= & {} w_{2}({\lambda })-\frac{\phi t_{d}P_{s}}{ \rho +\phi +\nu }-K_{1}\left[ \frac{\phi \left( 1-t_{d}\right) }{\rho +\phi +\nu }-\frac{\phi \left( 1-t_{d}\right) }{\rho +\phi +\alpha }\right] , \\ m_{3}({\lambda })= & {} w_{3}({\lambda })-\frac{\nu t_{d}P_{s}}{ \rho +\phi +\nu }-K_{1}\left[ \frac{\nu \left( 1-t_{d}\right) }{\rho +\phi +\nu }-\frac{\alpha \left( 1-t_{d}\right) }{\rho +\phi +\alpha }\right] . \end{aligned}$$

Lastly consider \(0<K_{1}\le K_{2}\). If \(D>0\), the expressions for \(\{m_{i}({\lambda })\}_{i=1}^{3}\) are

$$\begin{aligned} m_{1}({\lambda })= & {} w_{1}({\lambda })-\frac{\rho t_{d}P_{s}}{ \rho +\phi +\alpha }-\frac{\rho t_{d}P_{j}}{\rho +\tau +\alpha }, \\ m_{2}({\lambda })= & {} w_{2}({\lambda })-\frac{\phi t_{d}P_{s}}{ \rho +\phi +\alpha }-\frac{\tau t_{d}P_{j}}{\rho +\tau +\alpha }, \\ m_{3}({\lambda })= & {} w_{3}({\lambda })-\frac{\alpha t_{d}P_{s} }{\rho +\phi +\alpha }-\frac{\alpha t_{d}P_{j}}{\rho +\tau +\alpha }. \end{aligned}$$

If instead \(D\le 0\), the expressions for \(\{m_{i}({\lambda })\}_{i=1}^{3}\) are

$$\begin{aligned} m_{1}({\lambda })= & {} w_{1}({\lambda })-\frac{\rho t_{d}P_{s}}{ \rho +\phi +\alpha }-\frac{\rho t_{d}P_{j}}{\rho +\phi +\nu }, \\ m_{2}({\lambda })= & {} w_{2}({\lambda })-\frac{\phi t_{d}P_{s}}{ \rho +\phi +\alpha }-\frac{\phi t_{d}P_{j}}{\rho +\phi +\nu }, \\ m_{3}({\lambda })= & {} w_{3}({\lambda })-\frac{\alpha t_{d}P_{s} }{\rho +\phi +\alpha }-\frac{\nu t_{d}P_{j}}{\rho +\phi +\nu }. \end{aligned}$$

For each of the six cases, it is easy to verify that \(d_{1}( {\lambda })+d_{2}({\lambda })+d_{3}({\lambda })=0\). Parts (ii)–(iv) of Proposition 1 give the fraction of equity, senior debt, and junior debt that is held by each agent in each of the six cases. For all six cases, the fractions of each security sum to one. This verifies condition (v) of Definition 1.

If \(K_{1}\le K_{2}\le 0\), then \(N({\lambda })=1\) and there is only equity in the capital structure. The after-tax equity payoff is

$$\begin{aligned} g_{1}(Y,{\lambda })=P_{e}+(1-t_{e})(1-t_{c})(Y-P_{e}), \end{aligned}$$

which coincides with the total after-tax payoff \(f(Y,{\lambda })\). See item 12 of Table 1. If \(K_{1}\le 0<K_{2}\), then \(N({\lambda })=2\) and the capital structure contains equity and senior debt with face value \(K_{2}\). In this case the after-tax equity payoff is

$$\begin{aligned} g_{1}(Y,{\lambda })=P_{e}+(1-t_{e})(1-t_{c})(\max [0,Y-K_{2}]-P_{e}), \end{aligned}$$
(15)

while the after-tax senior debt payoff is \(g_{2}(Y,{\lambda })=P_{s}+(1-t_{d})(\min [Y,K_{2}]-P_{s})\).

The total after-tax payoff is \(f(Y,{\lambda })=g_{1}(Y,{\lambda })+g_{2}(Y,{\lambda })\). Again, see item 12 of Table 1. Lastly, if \(0<K_{1}\le K_{2}\), then \(N({\lambda })=3\) and the capital structure contains equity, senior debt with face value \(K_{1}\), and junior debt with face value \( K_{2}-K_{1}\). The after-tax equity payoff is the same as (15), but the after-tax senior debt payoff is \(g_{2}(Y,{\lambda } )=P_{s}+(1-t_{d})(\min [Y,K_{1}]-P_{s})\)

and the after-tax junior debt payoff is

$$\begin{aligned} g_{3}(Y,{\lambda })=P_{j}+(1-t_{d})(\max [0,Y-K_{1}]-\max [0,Y-K_{2}]-P_{j}). \end{aligned}$$

The total after-tax payoff is \(f(Y,{\lambda })=g_{1}(Y, {\lambda })+g_{2}(Y,{\lambda })+g_{3}(Y,{\lambda })\). Once again, see item 12 of Table 1. Using the above values of \(\{d_{i}( {\lambda })\}_{i=1}^{3}\) and using the security fractions from parts (ii)–(iv) of Proposition 1, the agents’ sharing rules \(\{s_{i}(Y,{\lambda })\}_{i=1}^{3}\) are constructed from condition (iii) of Definition 1. Note that for each of the six cases, \(s_{1}(Y,{\lambda })+s_{2}(Y, {\lambda })+s_{3}(Y,{\lambda })=f(Y,{\lambda })\), which verifies condition (ii) of Definition 1.

For each of the six cases, it is now possible to verify by direct substitution that

$$\begin{aligned} \lambda _{1}U_{1}^{^{\prime }}(s_{1}(Y,{\lambda }))=\lambda _{2}U_{2}^{^{\prime }}(s_{2}(Y,{\lambda }))=\lambda _{3}U_{3}^{^{\prime }}(s_{3}(Y,{\lambda }))=\xi (Y,{\lambda }), \end{aligned}$$
(16)

where \(\xi (Y,{\lambda })\) is given in part (v) of Proposition 1. Recall that the sign of D in (11) is related to the agents’ preferences in (2)–(3). If (11) is positive, the events \(\left\{ Y>K_{1}\right\} \) and \(\left\{ W_{2}>\theta \right\} \) are equivalent, as are the events \(\left\{ Y>K_{2}\right\} \) and \(\left\{ W_{3}>\eta \right\} \). On the other hand, if (11) is negative, the events \(\left\{ Y>K_{1}\right\} \) and \( \left\{ W_{3}>\eta \right\} \) are equivalent, as are the events \(\left\{ Y>K_{2}\right\} \) and \(\left\{ W_{2}>\theta \right\} \). First suppose \( K_{1}\le K_{2}\le 0\). Since \(Y>0\), we know that \(Y>K_{1}\) and \(Y>K_{2}\). Thus regardless of the sign of D, we know that \(W_{2}>\theta \) and \( W_{3}>\eta \). To evaluate (16), we use only the piece of \(U_{2}\) in (2) that corresponds to \(W_{2}>\theta \) and only the piece of \(U_{3}\) in (3) that corresponds to \(W_{3}>\eta \). Next suppose \(K_{1}\le 0<K_{2}\). In this case we know that \(Y>K_{1}\). To evaluate (16) when \(D>0\), we use only the piece of \(U_{2}\) in (2) that corresponds to \(W_{2}>\theta \), but we use both pieces of \(U_{3}\) in (3). On the other hand, to evaluate (16) when \(D\le 0\), we use both pieces of \(U_{2}\) in (2), but we use only the piece of \(U_{3}\) in (3) that corresponds to \(W_{3}>\eta \). Lastly, suppose that \(0<K_{1}\le K_{2}\). In this case we use both pieces of \(U_{2}\) and both pieces of \(U_{3}\). To evaluate (16) when \(D>0\), we rely on the fact that the events \(\left\{ Y>K_{1}\right\} \) and \(\left\{ W_{2}>\theta \right\} \) are equivalent, as are the events \(\left\{ Y>K_{2}\right\} \) and \(\left\{ W_{3}>\eta \right\} \) . On the other hand, when \(D\le 0\), we rely on the fact that the events \( \left\{ Y>K_{1}\right\} \) and \(\left\{ W_{3}>\eta \right\} \) are equivalent, as are the events \(\left\{ Y>K_{2}\right\} \) and \(\left\{ W_{2}>\theta \right\} \). Thus for each of the six cases, it can be verified that condition (i) of Definition 1 is satisfied.

Once a probability measure \(\mathbb {P}\) is specified, the values for \( \lambda _{1}\), \(\lambda _{2}\), and \(\lambda _{3}\) can be extracted from the following system of equations

$$\begin{aligned} {\mathbb {E}}[\xi (Y,{\lambda })\,s_{i}(Y,{\lambda })]=W_{0i}\,, \end{aligned}$$
(17)

for \(i=1,2,3\), which is the same as condition (iv) of Definition 1. This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanden, J.M. Optimal capital structures for private firms. Ann Finance 12, 245–273 (2016). https://doi.org/10.1007/s10436-016-0280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-016-0280-x

Keywords

JEL Classification

Navigation