Skip to main content
Log in

Optimal investment in multidimensional Markov-modulated affine models

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

In a multidimensional affine framework we consider a portfolio optimization problem with finite horizon, where an investor aims to maximize the expected utility of her terminal wealth. We state a very flexible asset price model that incorporates several risk factors modeled both by diffusion processes and by a Markov chain. Exploiting the affine structure of the model we solve the corresponding Hamilton–Jacobi–Bellman equations explicitly up to an expectation only over the Markov chain or equivalently up to a system of simple ODEs. The relevance of the presented model is illustrated on two examples including a stochastic short rate model with trading in the bond and the stock market, and a multidimensional stochastic volatility and stochastic correlation model. Precise verification results for both examples are provided. Economic interpretations of the models and results complement the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In the case of constant parameters without Markov switching Formula (18) leads to the optimal portfolio given by Korn and Kraft (2001). Note that in the latter study the authors also present a proof of the verification theorem without Markov switching based on a general result in Fleming and Soner (1993, p. 163). They require explicitly the continuity of the model parameters. Instead of loosening this assumption for our proof we prefer to apply directly Remark 2 in a straightforward manner to obtain an alternative proof that is shorter and easy to follow.

  2. The inequalities in (20) correspond for the one-dimensional case to (27) and (26) in Kraft (2005).

  3. First note that \(\vartheta _j>0\). If \(\delta >0\), then \(0<a_j<|\tilde{\kappa }_j|\). As \(\tilde{\kappa }_j+a_j>0\), it follows that \(\tilde{\kappa }_j>0\). So, \(0<a_j<\tilde{\kappa }_j\). This leads to \(0<b_j<1\). We can conclude that \(B_j>0\). The case \(\delta <0\) goes analogously.

  4. Note that the increase in the asset variances is achieved by an increase in matrix A, whereas the decrease in the returns is modeled by lower values for \(\theta _1\) and \(\theta _2\) for the second state.

References

  • Ang, A., Bekaert, G.: Stock return predictability: is it there? Rev Financ Stud 20(3), 651–707 (2007)

    Article  Google Scholar 

  • Bäuerle, N., Li, Z.: Optimal portfolios for financial markets with Wishart volatility. J Appl Probab 50(4), 1025–1043 (2013)

    Article  Google Scholar 

  • Bäuerle, N., Rieder, U.: Portfolio optimization with Markov-modulated stock prices and interest rates. Autom Control 49(3), 442–447 (2004)

    Article  Google Scholar 

  • Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occuring in the statistical analysis of probabilistic functions of Markov chains. Ann Math Stat 41(1), 164–171 (1970)

    Article  Google Scholar 

  • Bellman, R.: Dynamic Programming, 1st edn. Princeton: Princeton University Press (1957)

  • Bernhart, G., Höcht, S., Neugebauer, M., Neumann, M., Zagst, R.: Asset correlations in turbulent markets and the impact of different regimes on asset management. Asia-Pac J Oper Res 28(1), 1–23 (2011)

    Article  Google Scholar 

  • Bolder, D.J.: Affine term-structure models: theory and implementation. Bank of Canada working paper no. 2001-15 (2001)

  • Brennan, M.J., Xia, Y.: Stochastic interest rates and the bond-stock mix. Eur Financ Rev 4(2), 197–210 (2000)

    Article  Google Scholar 

  • Brown, D.P., Gibbson, M.R.: A simple econometric approach for utility-based asset pricing models. J Finance 40(2), 359–381 (1985)

    Article  Google Scholar 

  • Buraschi, A., Porchia, P., Trojani, F.: Correlation risk and optimal portfolio choice. J Finance 65(1), 393–420 (2010)

    Article  Google Scholar 

  • Campbell, J.Y., Viceira, L.M.: Consumption and portfolio decisions when expected returns are time varying. Q J Econ 114(2), 433–495 (1999)

    Article  Google Scholar 

  • Choi, S., Yuan, D.: Continuous time stochastic volatility models with regime shifts. Working paper (2013)

  • Cont, R., da Fonseca, J.: Dynamics of implied volatility surfaces. Quant Finance 2(1), 45–60 (2002)

    Article  Google Scholar 

  • Durham, G., Park, Y.: Beyond stochastic volatility and jumps in returns and volatility. J Bus Econ Stat 31(1), 107–121 (2013)

    Article  Google Scholar 

  • Elliott, R.J., Nishide, K.: Pricing of discount bonds with a Markov switching regime. Ann Finance 10(3), 509–522 (2014)

    Article  Google Scholar 

  • Elliott, R.J., Shen, J.: Dynamic optimal capital structure with regime switching. Ann Finance 11(2), 199–220 (2015)

    Article  Google Scholar 

  • Elliott, R.J., Siu, T.K.: A Markovian regime-switching stochastic differential game for portfolio risk minimization. In: American Control Conference, pp, 1017–1022 (2008)

  • Elliott, R.J., Siu, T.K.: On Markov-modulated exponential-affine bond price formulae. Appl Math Finance 16(1), 1–15 (2009a)

    Article  Google Scholar 

  • Elliott, R.J., Siu, T.K.: Robust optimal portfolio choice under a Markovian regime switching model. Methodol Comput Appl 11(2), 145–157 (2009b)

    Article  Google Scholar 

  • Elliott, R.J., Siu, T.K.: On risk minimizing portfolios under a Markovian regime-switching Black–Scholes economy. Ann Oper Res 176(1), 271–291 (2010)

    Article  Google Scholar 

  • Elliott, R.J., Siu, T.K.: A BSDE approach to a risk-based optimal investment of an insurer. Automatica 47(2), 253–261 (2011a)

    Article  Google Scholar 

  • Elliott, R.J., Siu, T.K.: A stochastic differential game for optimal investment of an insurer with regime switching. Quant Finance 11(3), 365–380 (2011b)

    Article  Google Scholar 

  • Elliott, R.J., Siu, T.K.: An HMM approach for optimal investment of an insurer. Int J Robust Nonlin 22(7), 778–807 (2012)

    Article  Google Scholar 

  • Elliott, R.J., Aggoun, L., Moore, J.: Hidden Markov Models, 1st edn. New York: Springer (1995)

  • Elliott, R.J., Siu, T.K., Chan, L.: Pricing volatility swaps under Heston’s stochastic volatility model with regime switching. Appl Math Finance 14(1), 41–62 (2007)

    Article  Google Scholar 

  • Elliott, R.J., Siu, T.K., Badescu, A.: On mean–variance portfolio selection under a hidden Markovian regime-switching model. Econ Model 27(3), 678–686 (2010)

    Article  Google Scholar 

  • Engle, R.: What good is a volatility model? Quant Finance 1(2), 237–245 (2001)

    Article  Google Scholar 

  • Escobar, M., Olivares, P.: Pricing of mountain range derivatives under a principal component stochastic volatility model. Appl Stoch Models Bus Ind 29(1), 31–44 (2013)

    Article  Google Scholar 

  • Escobar, M., Götz, B., Zagst, R.: Pricing of a CDO on stochastically correlated underlyings. Quant Finance 10(3), 265–277 (2010)

    Article  Google Scholar 

  • Escobar, M., Götz, B., Neykova, D., Zagst, R.: Stochastic correlation and volatility mean-reversion—empirical motivation and derivatives pricing via perturbation theory. Appl Math Finance 21(6), 555–594 (2014)

    Article  Google Scholar 

  • Escobar, M., Neykova, D., Zagst, R.: Portfolio optimization in affine models with Markov switching. Int J Theor Appl Finance 18(3), 1–44 (2015)

    Article  Google Scholar 

  • Fei, W.: Optimal consumption and portfolio under inflation and Markovian switching. Stoch Int J Probab Stoch Process 85(2), 272–285 (2013)

    Article  Google Scholar 

  • Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 1st edn. New York: Springer (1993)

  • Flor, C.R., Larsen, L.S.: Robust portfolio choice with stochastic interest rates. Ann Finance 10(2), 243–265 (2014)

    Article  Google Scholar 

  • Fouque, J., Papanicolaou, G., Sircar, R., Solna, K.: Multiscale Stochastic Volatility for Equity, Interest-Rate and Credit Derivatives, 1st edn. New York: Cambridge University Press (2011)

  • Hamilton, J.D.: A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57(2), 357–384 (1989)

    Article  Google Scholar 

  • Hata, H., Sekine, J.: Risk-sensitive asset management under a Wishart autoregressive factor model. J Math Finance 3(1A), 222–229 (2013)

    Article  Google Scholar 

  • Hauptmann, J., Hoppenkamps, A., Min, A., Ramsauer, F., Zagst, R.: Forecasting market turbulence using regime-switching models. Financ Mark Portf Manag 28(2), 139–164 (2014)

    Article  Google Scholar 

  • Heunis, A.J.: Quadratic minimization with portfolio and terminal wealth constraints. Ann Finance 11(2), 243–282 (2015)

    Article  Google Scholar 

  • Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, 2nd edn. Heidelberg: Springer (2003)

  • Kallsen, J., Muhle-Karbe, J.: Exponentially affine martingales, affine measure changes and exponential moments of affine processes. Stoch Processes Appl 120(2), 163–181 (2010a)

    Article  Google Scholar 

  • Kallsen, J., Muhle-Karbe, J.: Utility maximization in affine stochastic volatility models. Int J Theor Appl Finance 13(03), 459–477 (2010b)

    Article  Google Scholar 

  • Karatzas, I., Xue, X.: A note on utility maximization under partial observations. Math Finance 1, 57–70 (1991)

    Article  Google Scholar 

  • Kim, T.S., Omberg, E.: Dynamic nonmyopic portfolio behavior. Rev Financ Stud 9(1), 141–161 (1996)

    Article  Google Scholar 

  • Korn, R., Kraft, H.: A stochastic control approach to portfolio problems with stochastic interest rates. SIAM J Control Optim 40(4), 1250–1269 (2001)

    Article  Google Scholar 

  • Kraft, H.: Optimal portfolios and Heston’s stochastic volatility model. Quant Finance 5(3), 303–313 (2005)

    Article  Google Scholar 

  • Liu, J.: Portfolio selection in stochastic environments. Rev Finance Stud 20(1), 1–39 (2007)

    Article  Google Scholar 

  • Liu, R.H.: A finite-horizon optimal investment and consumption problem using regime-switching models. Int J Theor Appl Financ 17(4), 1–18 (2014a)

  • Liu, R.H.: Optimal investment and consumption with proportional transaction costs in regime-switching model. J Optim Theory Appl 163(2), 614–641 (2014b)

    Article  Google Scholar 

  • Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev Econ Stat 51(3), 247–257 (1969)

    Article  Google Scholar 

  • Merton, R.C.: Optimum consumption and portfolio rules in a continuous time model. J Econ Theory 3(4), 373–413 (1971)

    Article  Google Scholar 

  • Munk, C., Rubtsov, A.: Portfolio management with stochastic interest rates and ination ambiguity. Ann Finance 10(3), 419–455 (2014)

    Article  Google Scholar 

  • Rubinstein, M.: Nonparametric tests of alternative option pricing models using all reported trades and quotes on the 30 most active CBOE option classes from August 23, 1976 through August 31, 1978. J Finance 40(2), 455–480 (1985)

    Article  Google Scholar 

  • Sangvinatsos, A., Wachter, J.A.: Does the failure of the expectations hypothesis matter for long-term investors? J Finance 60(1), 179–230 (2005)

    Article  Google Scholar 

  • Santos, T., Veronesi, P.: Labor income and predictable stock returns. Rev Financ Stud 19(1), 1–44 (2006)

    Article  Google Scholar 

  • Sass, J., Haussmann, U.: Optimizing the terminal wealth under partial information: the drift process as a continuous time Markov chain. Financ Stoch 8, 553–577 (2004)

    Article  Google Scholar 

  • Schönbucher, P.J.: Credit Derivatives Pricing Models, 1st edn. Chichester: Wiley (2003)

  • Sotomayor, L.R., Cadenillas, A.: Explicit solutions of consumption-investment problems in financial markets with regime switching. Math Finance 19(2), 251–279 (2009)

    Article  Google Scholar 

  • Vasicek, O.: An equilibrium characterization of the term structure. J Financ Econ 5(2), 177–188 (1977)

    Article  Google Scholar 

  • Yi, B., Viens, F., Law, B., Li, Z.: Dynamic portfolio selection with mispricing and model ambiguity. Ann Finance 11(1), 37–75 (2015)

    Article  Google Scholar 

  • Zariphopoulou, T.: A solution approach to valuation with unhedgeable risks. Financ Stoch 5(1), 61–82 (2001)

    Article  Google Scholar 

  • Zhou, N., Mamon, R.: An accessible implementation of interest rate models with Markov-switching. Expert Syst Appl 39(5), 4679–4689 (2012)

    Article  Google Scholar 

  • Zucchini, W., MacDonald, I.L.: Hidden Markov Models for Time Series: An introduction Using R, 1st edn. Boka Raton: Chapman and Hall/CRC Press (2009)

Download references

Acknowledgments

We would like to thank the anonymous referees for the helpful and insightful comments and suggestions. Daniela Neykova gratefully acknowledges financial support from the program Women in Math Science at the Technische Universität München.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Neykova.

Appendix

Appendix

Proof

(Proposition 1) Consider an arbitrary but fixed point \((t,v,x,\mathbf{e}_{\mathbf{i}})\in [0,T]\times \mathbb {R}_{\ge 0}\times D^X\times \{{\mathbf{e}_{\mathbf{1}}},\ldots ,\mathbf{e}_{\mathbf{I}}\}\) and assume that the wealth of the investor at time t is v, further \(X(t)=x\) and \({\mathcal {MC}}(t)=\mathbf{e}_{\mathbf{i}}\). The first statement follows directly from the fact that \(\varPhi \) is a martingale and the terminal condition in (11). For the second one we apply the idea from Proposition 2.3 in Kallsen and Muhle-Karbe (2010b): First observe that substitution of the ansatz \(\varPhi =\frac{v^{\delta }}{\delta }f\) in (11) leads to the following system of PDEs for f, for all \(i\in \{1,\ldots ,I\}\):

$$\begin{aligned}&f_t+f\delta \big (r+{\bar{\pi }}'(\mu -r)\big )+f_x'\mu ^X+\frac{1}{2}Tr\big (f_{xx'}\varSigma ^X(\varSigma ^X)'\big )+f_x'\delta \varSigma ^X\rho \varSigma '{\bar{\pi }}\nonumber \\&\quad +\frac{1}{2}f\delta (\delta -1){\bar{\pi }}'\varSigma \varSigma '{\bar{\pi }}\Big |_{\big (t,x,\mathbf{e}_{\mathbf{i}}\big )}=-\sum _{z=1}^{I}q_{iz}f(t,x,\mathbf{e_z}),\quad f(T,x,\mathbf{e}_{\mathbf{i}})=1, \end{aligned}$$
(26)

where \({\bar{\pi }}(t)=\frac{1}{1-\delta }\Big \{\big (\varSigma \varSigma '\big )^{-1}\lambda +\big (\varSigma '\big )^{-1}\rho '(\varSigma ^X)'\frac{f_x}{f}\Big \}\Big |_{\big (t,x,\mathbf{e}_{\mathbf{i}}\big )}\). Now let \(\pi \) be an arbitrary strategy and define \(L(\tau ):=\big \{V^{{\bar{\pi }}}(\tau )\big \}^{\delta -1}V^{\pi }(\tau )f\big (\tau ,X(\tau ),{\mathcal {MC}}(\tau )\big )\), for all \(\tau \in [t,T]\). Apply the semimartingale Representation (1) of the Markov chain and Itô’s rule to obtain the dynamics of process \(\{L(\tau )\}_{\tau \in [t,T]}\):

$$\begin{aligned} \text {d}L&=\big \{V^{{\bar{\pi }}}\big \}^{\delta -1}V^{\pi }\Big [f_t+f_x'\mu ^X+\frac{1}{2}Tr\Big (f_{xx'}\varSigma ^X(\varSigma ^X)'\Big )+f(\delta -1)(r+{\bar{\pi }}'\lambda )\nonumber \\&\quad +f(r+\pi '\lambda ) +f_x'(\delta -1)\varSigma ^X\rho \varSigma '{\bar{\pi }}+f_x'\varSigma ^X\rho \varSigma '\pi +f(\delta -1)\pi '\varSigma \varSigma '{\bar{\pi }}\nonumber \\&\quad +\frac{1}{2}f(\delta -1)(\delta -2){\bar{\pi }}'\varSigma \varSigma '{\bar{\pi }} +\sum _{i=1}^{I}q_{MC(t)i}f\big (t,X(\tau ),\mathbf{e}_{\mathbf{i}}\big )\Big ]\text {d}\tau \nonumber \\&\quad +\big \{V^{{\bar{\pi }}}\big \}^{\delta -1}V^{\pi }f'_x\varSigma ^X\text {d}W^X+\big \{V^{{\bar{\pi }}}\big \}^{\delta -1}V^{\pi }f\big ((\delta -1){\bar{\pi }}'+\pi '\big )\varSigma \text {d}W^P\nonumber \\&\quad +\big \{V^{{\bar{\pi }}}\big \}^{\delta -1}V^{\pi }\big (f(t,X(t),{\mathbf{e}_{\mathbf{1}}}),\ldots ,f(t,X(t),\mathbf{e}_{\mathbf{I}})\big )\text {d}M\nonumber \\&\,{:=}\,\mu ^L\text {d}\tau +\sigma ^L_1\text {d}W^X+\sigma ^L_2\text {d}W^P+\sigma ^L_3\text {d}M, \end{aligned}$$

where we have missed out the arguments \((\tau ,X(\tau ),{\mathcal {MC}}(\tau ))\) for better readability. By a substitution of Eq. (26) and the definition of \({\bar{\pi }}\) it can be shown that \(\mu ^L=0\). It follows that L is a local martingale, as all involved functions are continuous in X, \(V^{\pi }\), \(V^{{\bar{\pi }}}\), \(\pi \) and \({\bar{\pi }}\) for all \(\mathbf{e}_{\mathbf{i}}\in \mathcal {E}\). Furthermore, as f is assumed to be positive, process L is positive as well, so it is a supermartingale. Using this together with the concavity of the utility function \(U(v)=\frac{v^{\delta }}{\delta }\), the martingale property of \(\big \{\varPhi \big (t,V^{{\bar{\pi }}}(t),X(t)\big )\big \}_{t\in [0,T]}\), and \(L(T)=1\) we obtain the following inequality:

$$\begin{aligned}&\mathbb {E}\big [U\big (V^{\pi }(T)\big )\big |\mathscr {F}_t\big ] \nonumber \\&\le \mathbb {E}\big [U\big (V^{{\bar{\pi }}}(T)\big )\big |\mathscr {F}_t\big ]+\mathbb {E}\big [U_v\big (V^{{\bar{\pi }}}(T)\big )\big (V^{\pi }(T)-V^{{\bar{\pi }}}(T)\big )\big |\mathscr {F}_t\big ]\nonumber \\&=\mathbb {E}\big [U\big (V^{{\bar{\pi }}}(T)\big )\big |\mathscr {F}_t\big ]+\mathbb {E}\big [L(T)\big |\mathscr {F}_t\big ]-\mathbb {E}\big [\big \{V^{{\bar{\pi }}}(T)\big \}^{\delta }\big |\mathscr {F}_t\big ]\nonumber \\&\le \mathbb {E}\big [U\big (V^{{\bar{\pi }}}(T)\big )\big |\mathscr {F}_t\big ]+L(t)-\delta \mathbb {E}\big [\varPhi \big (T,V^{{\bar{\pi }}}(T),X(T),{\mathcal {MC}}(T)\big )\big |\mathscr {F}_t\big ]\nonumber \\&=\mathbb {E}\big [U\big (V^{{\bar{\pi }}}(T)\big )\big |\mathscr {F}_t\big ]+v^{\delta }f\big (t,x,\mathbf{e}_{\mathbf{i}}\big )-\delta \varPhi \big (t,v,x,\mathbf{e}_{\mathbf{i}}\big )\nonumber \\&=\mathbb {E}\big [U\big (V^{{\bar{\pi }}}(T)\big )\big |\mathscr {F}_t\big ]. \end{aligned}$$

Our proof is complete. \(\square \)

Proof

(Proposition 3) We will show the verification result for the corresponding time-dependent model and apply Proposition 2. As in Sect. 3 we obtain the following candidate for the value function in the time-dependent model: \(\varPhi ^m(t,v,x)=\frac{v^{\delta }}{\delta }\exp \Big \{\int _t^Tw(s,m(s))\text {d}s\Big \}\exp \{B(t)x\}.\) Obviously it is conitnuous and it can be shown by direct substitution that it solves the HJB equation for the time-dependent model (see 14). The candidate for the optimal portfolio is:

$$\begin{aligned} {\bar{\pi }}^m(t)=\frac{1}{(1-\delta )}\left( \begin{array}{c}\frac{\lambda _1(m(t))-\rho _{12}(m(t))\lambda _2(m(t))}{\chi A_2(T_1-t)(1-\rho _{12}^2(m(t)))}-\frac{B(t)}{A_2(T_1-t)}\\ \frac{\lambda _2(m(t))-\rho _{12}(m(t))\lambda _1(m(t))}{\nu (m(t))(1-\rho _{12}^2(m(t)))}\end{array}\right) . \end{aligned}$$

What remains to be demonstrated is that \(\{\varPhi ^m\big (t,V^{m,{\bar{\pi }}^m}(t),X^m(t)\big )\}_{t\in [0,T]}\) is a martingale. Itô’s formula and Eq. (11) show that it has zero drift. So, we can show that it is a square integrable martingale by applying Th. III.6.4 from Jacod and Shiryaev (2003). To this aim we need to show:

$$\begin{aligned} \mathbb {E}\Big [\int _{0}^{T}\Big (\varPhi ^m_v(t)\varSigma ^V_1(t)-\varPhi ^m_x(t)\chi \Big )^2\text {d}t\Big ]<\infty \text { and } \mathbb {E}\Big [\int _{0}^{T}\Big (\varPhi ^m_v(t)\varSigma ^V_2(t)\Big )^2\text {d}t\Big ]<\infty , \end{aligned}$$

where we omitted the arguments of the functions to improve readability. Recalling the definition of \(\varPhi ^m(t)\), \(\varSigma ^V_1(t)\) and \(\varSigma ^V_2(t)\), and the fact that B(t), \(w(t,\mathbf{e}_{\mathbf{i}})\), \(A_2(T_1-t)\) and \({\bar{\pi }}^m(t)\) are bounded on [0, T], it becomes clear that it suffices to show the following inequality:

$$\begin{aligned} A:=\mathbb {E}\Big [\int _{0}^{T}(V^{m,{\bar{\pi }}^m}(t))^{2\delta }\exp \big \{2B(t)X^m(t)\big \}\text {d}t\Big ]<\infty . \end{aligned}$$
(27)

Inserting the solution for process \(V^{m,{\bar{\pi }}^m}\) and the relation \(W^P_1=-W^X\) in (27) leads to:

$$\begin{aligned} A&=v_0^{2\delta }\mathbb {E}\left[ \int _{0}^{T}\exp \left\{ 2\delta \int _0^tX^m(s)+{\bar{\pi }}^m_1(s)\lambda _1\chi A_2(T_1-s)+{\bar{\pi }}^m_2(s)\lambda _2\nu \right. \right. \nonumber \\&\quad -\frac{1}{2}\big [\chi A_2(T_1-s){\bar{\pi }}^m_1(s)+\bar{\pi }^m_2(s)\rho _{12}\nu \big ]^2-\frac{1}{2}\big [{\bar{\pi }}^m_2(s)\sqrt{1-\rho ^2_{12}}\nu \big ]^2\text {d}s\nonumber \\&\quad +2\delta \int _0^t-{\bar{\pi }}^m_2(s)\rho _{12}\nu -\chi A_2(T_1-s){\bar{\pi }}^m_1(s)\text {d}W^X(s)\nonumber \\&\left. \left. \quad +2\delta \int _0^t{\bar{\pi }}^m_2(s)\nu \sqrt{1-\rho _{12}^2}\text {d}W^P_2(s)+2B(t)X^m(t)\right\} \text {d}t\right] . \end{aligned}$$

By inserting the following two equations for process \(X^m\):

$$\begin{aligned} \int _0^tX^m(s)\text {d}s&=\frac{1}{\kappa }\big (X^m(0)-X^m(t)+\kappa \theta t+\chi W^X(t)\big )\\ X^m(t)&=X^m(0)e^{-\kappa t}+\theta (1-e^{-\kappa t})+\int _0^t\chi e^{\kappa (s-t)}\text {d}W^X(s), \end{aligned}$$

and exploiting the boundedness of \({\bar{\pi }}^m(t)\) and \(A_2(T_1-t)\) on [0, T], we can show the boundedness of A. Our proof is complete. \(\square \)

Proof

(Proposition 4) As in the proof of Proposition 3 we will first find the solution in the corresponding time-dependent model and then we will apply Proposition 2 to obtain the verification result for the model with Markov switching.

Following the steps from Sect. 3 it is easily shown that the solution to the HJB equation (14) for the time-dependent model is given by:

$$\begin{aligned} \varPhi ^m(t,v,x)&=\frac{v^{\delta }}{\delta }\xi ^m(t)\exp \{B_1(t)x_1+B_2(t)x_2\}, \end{aligned}$$
(28)

where \(\xi ^m(t)=\exp \Big \{\int _t^Tw(s,m(s))\text {d}s\Big \}\), for function w as in (22), and functions \(B_j\), for \(j=1,2\) satisfying the following ODEs:

$$\begin{aligned} \frac{\partial }{\partial t}B_j+B_j\left[ \frac{\delta }{1-\delta } \chi _j\rho _jc_j-\kappa _j\right] +\frac{1}{2}\big (B_j\big )^2\frac{\chi _j^2}{\vartheta _j}+\frac{1}{2}\frac{\delta }{1-\delta }c_j^2=0,\quad B_j(T)=0. \end{aligned}$$
(29)

Note that Eq. (29) corresponds to Eq. (15), where we have substituted the model specifications from (19). The conditions in (20) allow us to apply Prop. 5.1 from Kraft (2005) and conclude that functions \(B_j\), for \(j=1,2\) are as in Eq. (21). Note that \(\varPhi ^m\) is continuous, piecewise sufficiently differentiable and satisfies the HJB PDE with the following portfolio strategy:

$$\begin{aligned} {\bar{\pi }}^m(t)=\frac{1}{1-\delta }\big (A'(m(t))\big )^{-1}\left\{ \left( \begin{array}{c}\frac{c_1\sqrt{X^{m}_1(t)}}{\sigma _1(X^m_1(t))}\\ \frac{c_2\sqrt{X^m_2(t)}}{\sigma _2(X^m_2(t))}\end{array}\right) +\left( \begin{array}{c}\frac{\rho _1\chi _1\sqrt{X^m_1(t)}B_1(t)}{\sigma _1(X^m_1(t))}\\ \frac{\rho _2\chi _2\sqrt{X^m_2(t)}B_2(t)}{\sigma _2(X^m_2(t))}\end{array}\right) \right\} . \end{aligned}$$

What remains to be proved is that \(\{\varPhi ^m\big (t,V^{m,{{\bar{\pi }}}^m}(t),X^m(t)\big )\}_{t\in [0,T]}\) is a martingale. We will show this by applying Cor. 3.4 from Kallsen and Muhle-Karbe (2010a). First substitute the solution for \(V^{m,{{\bar{\pi }}}^m}(t)\) as well as the dynamics for \(B_j(t)X_j^m(t)\) together with the definition of \(\mu \), \(\sigma \), \(\mu ^X\), \(\varSigma ^X\) and \({\bar{\pi }}^m\) in Eq. (28) to obtain the following expression for \(\varPhi ^m\):

$$\begin{aligned}&\varPhi ^m\big (t,V^{m,{{\bar{\pi }}}^m}(t),X^m(t)\big )\nonumber \\&\quad =\varPhi ^m\big (0,V^{m,{{\bar{\pi }}}^m}(0),X^m(0)\big )\nonumber \\&\qquad \cdot \exp \Bigg \{\int _0^t\sum _{j=1}^{2}X_j^m(s)\Bigg [\frac{\partial }{\partial t}B_j(s)-\kappa _jB_j(s)+\frac{\delta }{1-\delta }\big (c_j^2+B_j(s)\chi _j\rho _jc_j\big )\nonumber \\&\qquad -\frac{1}{2}\frac{\delta }{(1-\delta )^2}\big (c_j+B_j(s)\chi _j\rho _j\big )^2\Bigg ]\text {d}s+\sum _{j=1}^{2}\int _0^tB_j(s)\chi _j\sqrt{X^m_j(s)}\text {d}W^X_j(s)\nonumber \\&\qquad +\sum _{j=1}^{2}\int _0^t\frac{\delta }{1-\delta }\sqrt{X_j^{m}(s)}\big (c_j+B_j(s)\chi _j\rho _j\big )\text {d}W^P_j(s)\Bigg \}\nonumber \\&\quad =:\varPhi ^m\big (0,V^{m,{{\bar{\pi }}}^m}(0),X^m(0)\big )\exp \Bigg \{\int _0^t\mu ^L\big (s,X^{m}(s)\big )\text {d}s\nonumber \\&\qquad +\sum _{j=1}^{2}\int _0^t\varSigma ^L_j\big (s,X^{m}(s)\big )\text {d}W^X_j+\sum _{j=1}^{2}\int _0^t\varSigma ^L_{(2+j)}\big (s,X^{m}(s)\big )\text {d}W^P_j\Bigg \}\nonumber \\&\quad =:\varPhi ^m\big (0,V^{m,{{\bar{\pi }}}^m}(0),X^m(0)\big )\exp \big \{L(t)\big \}. \end{aligned}$$

Now consider process \(Z:=(X^m_1,X^m_2,L)\) and calculate its semimartingale characteristics \(\mu ^Z(t,x)\) and \(\varGamma ^Z(t,x)\):

$$\begin{aligned} \mu ^Z_j(t,x)&=\mu ^X_j(x,m(t)),\quad \mu ^Z_3(t,x)=\mu ^L(t,x)\\ \varGamma ^Z_{jj}(t,x)&=\chi _j^2x_j,\quad \varGamma ^Z_{12}(t,x)=\varGamma ^Z_{21}(t,x)=0\\ \varGamma ^Z_{33}(t,x)&=\sum _{j=1}^{2}x_j\Big [\big (B_j(t)\big )^2\chi ^2_j+\frac{\delta ^2}{(1-\delta )^2}\big (c_j+B_j\chi _j\rho _j\big )^2\nonumber \\&\quad +2\frac{\delta }{1-\delta }B_j(s)\chi _j\rho _j\big (c_j+B_j\chi _j\rho _j\big )\Big ]\\ \varGamma ^Z_{j3}(t,x)&=\varGamma ^Z_{3j}(t,x)=\chi _jx_j\Big [B_j(t)\chi _j+\frac{\delta }{1-\delta }\rho _j\big (c_j+B_j(t)\chi _j\rho _j\big )\Big ], \end{aligned}$$

for \(j=1,2\). Finally, compute:

$$\begin{aligned} \mu ^Z_3+\frac{1}{2}\varGamma ^Z_{33}&=\sum _{j=1}^{2}x_j\Bigg [\frac{\partial }{\partial t}B_j+B_j\big [\frac{\delta }{1-\delta }\chi _j\rho _jc_j-\kappa _j\big ]\nonumber \\&\quad +\frac{1}{2}\big (B_j\big )^2\frac{\chi _j^2}{\vartheta _j}+\frac{1}{2}\frac{\delta }{1-\delta }c_j^2\Bigg ]=0. \end{aligned}$$

Thus, we can apply Cor. 3.4 from Kallsen and Muhle-Karbe (2010a) and conclude that \(\big \{\exp \{L(t)\}\big \}_{t\in [0,T]}\) and hence also \(\big \{\varPhi ^m\big (t,V^{m,{{\bar{\pi }}}^m}(t),X^m(t)\big )\}\big \}_{t\in [0,T]}\) are martingales. So, by Remark 2 \(\varPhi ^m\) is indeed the value function in the time-dependent model and \({\bar{\pi }}^m\) is the optimal investment strategy. Application of Proposition 2 completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neykova, D., Escobar, M. & Zagst, R. Optimal investment in multidimensional Markov-modulated affine models. Ann Finance 11, 503–530 (2015). https://doi.org/10.1007/s10436-015-0268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-015-0268-y

Keywords

JEL Classification

Navigation