Skip to main content
Log in

A fiber-reinforced mesoscale constitutive model of tympanic membrane considering anisotropic deformation

考虑各向异性变形的人耳鼓膜纤维增强细观本构模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The tympanic membrane (TM), located at the end of the ear canal, is a collagenous multi-layer soft tissue membrane with fibers highly aligned in radial and circumferential orientations. This unique multi-layer fiber ultrastructure makes TM’s mechanical behavior display both anisotropy and nonlinearity, which is important in sound transmission. However, the constitutive model of TM which includes both features has not been proposed. In this study, we develop a fiber-reinforced mesoscale constitutive model of TM which captures both anisotropic and nonlinear elastic mechanical behaviors. The TM is considered a continuum fiber-reinforced composite with two families of collagen fibers. Its overall properties are built up by integrating its heterogeneous material properties through the thickness. The homogenized mechanical properties are assumed to be uniformly distributed through TM’s thickness and superposed by three uncoupled elastic contributions of radial collagen fibers, circumferential collagen fibers, and an equivalent isotropic matrix. The model is calibrated using literature data through the inverse method. Simulation results indicate that specific collagen fibers alignment is responsible for the significant spatial and directional variation of deformation of the TM strip. With the appropriate strength criteria related to fiber deformation, the anisotropic localized failure mode of the TM strip observed in the experiment can be captured. The nonlinear nature and rotation of collagen fiber bundles are the origin of the nonlinear mechanical behavior of TM strips under uniaxial loading. The mesoscale constitutive model offers a different perspective on TM’s anisotropic and nonlinear elastic mechanical behavior. This research improves our understanding of the mechanical behavior of the TM and could help biomimetic graft development.

摘要

鼓膜是听觉系统的重要组成部分, 位于外耳道末端, 是一种含胶原的多层软组织膜. 鼓膜的纤维沿着径向和环向方向高度取向, 其独特而复杂的超微结构使得力学行为呈现各向异性非线性, 这对于声音传输很重要. 然而, 同时包含这两个特征的鼓膜本构模型尚 未提出. 在本研究中, 我们建立了考虑鼓膜纤维分布的细观本构模型, 模型能够同时捕捉各向异性和非线性弹性力学行为. 鼓膜被认为 是包含两族胶原纤维的连续纤维增强复合材料, 并通过整合沿厚度方向异质材料性质建立整体力学性质. 均匀化的力学性质被假定沿 着厚度方向均匀分布, 并由径向胶原纤维, 环向胶原纤维和等效各向同性基质的三个非耦合弹性贡献叠加组成. 通过逆方法并使用文 献数据校准模型. 仿真结果表明, 特定的胶原纤维排列是鼓膜条带试样变形呈现显著空间非均匀性及各向异性的原因. 通过与纤维变 形相关的强度准则, 可以捕获在实验中观察到的鼓膜条带各向异性局部化失效模式. 胶原纤维束的旋转和非线性性质是单轴加载下鼓 膜条带非线性力学行为的起源. 该细观本构模型为鼓膜的各向异性和非线性弹性力学行为提供了不同的视角. 这项研究提高了我们对 鼓膜力学行为的理解, 并有助于仿生移植物的发展.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, Biomechanics of the tympanic membrane, J. BioMech. 44, 1219 (2011).

    Article  Google Scholar 

  2. K. Stenfeldt, C. Johansson, P. O. Eriksson, and S. Hellström, Collagen type II is produced in healing pars tensa of perforated tympanic membranes, Otology Neurotology 34, e88 (2013).

    Article  Google Scholar 

  3. B. Wang, P. Ghanta, S. Vinnikova, S. Bao, J. Liang, H. Lu, and S. Wang, Wrinkling of tympanic membrane under unbalanced pressure, J. Appl. Mech. 84, 041002 (2017).

    Article  Google Scholar 

  4. P. Parent, and J. B. Allen, Time-domain “wave” model of the human tympanic membrane, Hearing Res. 263, 152 (2010).

    Article  Google Scholar 

  5. X. Wang, T. Cheng, and R. Z. Gan, Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear, J. Acoust. Soc. Am. 122, 906 (2007).

    Article  Google Scholar 

  6. E. Goll, and E. Dalhoff, Modeling the eardrum as a string with distributed force, J. Acoust. Soc. Am. 130, 1452 (2011).

    Article  Google Scholar 

  7. M. Milazzo, E. Fallah, M. Carapezza, N. S. Kumar, J. H. Lei, and E. S. Olson, The path of a click stimulus from ear canal to umbo, Hearing Res. 346, 1 (2017).

    Article  Google Scholar 

  8. K. N. O’Connor, M. Tam, N. H. Blevins, and S. Puria, Tympanic membrane collagen fibers: A key to high-frequency sound conduction, Laryngoscope 118, 483 (2008).

    Article  Google Scholar 

  9. W. G. Engles, X. Wang, and R. Z. Gan, Dynamic properties of human tympanic membrane after exposure to blast waves, Ann. Biomed. Eng. 45, 2383 (2017).

    Article  Google Scholar 

  10. R. Z. Gan, K. Leckness, D. Nakmali, and X. D. Ji, Biomechanical measurement and modeling of human eardrum injury in relation to blast wave direction, Mil. Med. 183, 245 (2018).

    Article  Google Scholar 

  11. R. Z. Gan, D. Nakmali, X. D. Ji, K. Leckness, and Z. Yokell, Mechanical damage of tympanic membrane in relation to impulse pressure waveform — A study in chinchillas, Hearing Res. 340, 25 (2016).

    Article  Google Scholar 

  12. H. Luo, S. Jiang, D. U. Nakmali, R. Z. Gan, and H. Lu, Mechanical properties of a human eardrum at high strain rates after exposure to blast waves, J. dynamic Behav. Mater. 2, 59 (2016).

    Article  Google Scholar 

  13. J. Knutsson, D. Bagger-Sjöbäck, and M. von Unge, Collagen type distribution in the healthy human tympanic membrane, Otol. Neurotol. 30, 1225 (2009).

    Article  Google Scholar 

  14. S. Anand, T. Stoppe, M. Lucena, T. Rademakers, M. Neudert, S. Danti, L. Moroni, and C. Mota, Mimicking the human tympanic membrane: The significance of scaffold geometry, Adv. Healthc. Mater. 10, 2002082 (2021).

    Article  Google Scholar 

  15. M. von Witzleben, T. Stoppe, T. Ahlfeld, A. Bernhardt, M. L. Polk, M. Bornitz, M. Neudert, and M. Gelinsky, Biomimetic tympanic membrane replacement made by melt electrowriting, Adv. Healthc. Mater. 10, 2002089 (2021).

    Article  Google Scholar 

  16. M. von Witzleben, T. Stoppe, A. Zeinalova, Z. Chen, T. Ahlfeld, M. Bornitz, A. Bernhardt, M. Neudert, and M. Gelinsky, Multimodal additive manufacturing of biomimetic tympanic membrane replacements with near tissue-like acousto-mechanical and biological properties, Acta BioMater. 170, 124 (2023).

    Article  Google Scholar 

  17. H. Luo, C. Dai, R. Z. Gan, and H. Lu, Measurement of Young’s modulus of human tympanic membrane at high strain rates, J. BioMech. Eng.-T. Asme 131, 064501 (2009).

    Article  Google Scholar 

  18. H. Luo, H. Lu, C. Dai, and R. Z. Gan, A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates, Int. J. Exp. Comput. Biomech. 1, 1 (2009).

    Article  Google Scholar 

  19. W. F. Decraemer, M. A. Maes, and V. J. Vanhuyse, An elastic stressstrain relation for soft biological tissues based on a structural model, J. BioMech. 13, 463 (1980).

    Article  Google Scholar 

  20. T. Cheng, C. Dai, and R. Z. Gan, Viscoelastic properties of human tympanic membrane, Ann. Biomed. Eng. 35, 305 (2007).

    Article  Google Scholar 

  21. D. R. Trakimas, R. Ishai, I. Ghanad, N. L. Black, E. D. Kozin, J. T. Cheng, and A. K. Remenschneider, Otopathologic evaluation of temporalis fascia grafts following successful tympanoplasty in humans, Laryngoscope 128, 351 (2018).

    Article  Google Scholar 

  22. G. Huang, N. P. Daphalapurkar, R. Z. Gan, and H. Lu, A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation, J. BioMech. Eng.-T. Asme 130, 014501 (2008).

    Article  Google Scholar 

  23. X. Zhang, and R. Z. Gan, Dynamic properties of human tympanic membrane based on frequency-temperature superposition, Ann. Biomed. Eng. 41, 205 (2013).

    Article  Google Scholar 

  24. G. v. Békésy, The structure of the middle ear and the hearing of one’s own voice by bone conduction, J. Acoust. Soc. Am. 21, 217 (1949).

    Article  Google Scholar 

  25. I. Kirikae, The Structure and Function of the Middle Ear (University of Tokyo Press, Tokyo, 1960).

    Google Scholar 

  26. N. P. Daphalapurkar, C. Dai, R. Z. Gan, and H. Lu, Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation, J. Mech. Behav. Biomed. 2, 82 (2009).

    Article  Google Scholar 

  27. S. M. Hesabgar, H. Marshall, S. K. Agrawal, A. Samani, and H. M. Ladak, Measuring the quasi-static Young’s modulus of the eardrum using an indentation technique, Hearing Res. 263, 168 (2010).

    Article  Google Scholar 

  28. J. Aernouts, J. R. M. Aerts, and J. J. J. Dirckx, Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements, Hearing Res. 290, 45 (2012).

    Article  Google Scholar 

  29. H. Luo, F. Wang, C. Cheng, D. U. Nakmali, R. Z. Gan, and H. Lu, Mapping the Young’s modulus distribution of the human tympanic membrane by microindentation, Hearing Res. 378, 75 (2019).

    Article  Google Scholar 

  30. S. A. Rohani, S. Ghomashchi, S. K. Agrawal, and H. M. Ladak, Estimation of the Young’s modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis, Hearing Res. 345, 69 (2017).

    Article  Google Scholar 

  31. F. S. M. Pires, S. Avril, P. Livens, J. A. Cordioli, and J. J. J. Dirckx, Material identification on thin shells using the virtual fields method, demonstrated on the human eardrum, J. BioMech. Eng.-T. Asme 144, 031004 (2022).

    Article  Google Scholar 

  32. W. R. J. Funnell, N. Maftoon, and W. F. Decraemer, Modeling of middle ear mechanics, in: The Middle Ear. (Springer, New York, 2013).

    Google Scholar 

  33. H. Motallebzadeh, M. Charlebois, and W. R. J. Funnell, A non-linear viscoelastic model for the tympanic membrane, J. Acoust. Soc. Am. 134, 4427 (2013).

    Article  Google Scholar 

  34. J. Aernouts, and J. J. J. Dirckx, Elastic characterization of the gerbil pars flaccida from in situ inflation experiments, Biomech. Model. Mechan. 10, 727 (2011).

    Article  Google Scholar 

  35. J. Liang, K. D. Smith, R. Z. Gan, and H. Lu, The effect of blast overpressure on the mechanical properties of the human tympanic membrane, J. Mech. Behav. Biomed. 100, 103368 (2019).

    Article  Google Scholar 

  36. L. Qi, W. R. J. Funnell, and S. J. Daniel, A nonlinear finite-element model of the newborn middle ear, J. Acoust. Soc. Am. 124, 337 (2008).

    Article  Google Scholar 

  37. P. G. G. Muyshondt, and J. J. J. Dirckx, Structural stiffening in the human middle ear due to static pressure: Finite-element analysis of combined static and dynamic middle-ear behavior, Hearing Res. 400, 108116 (2021).

    Article  Google Scholar 

  38. K. Homma, Y. Shimizu, N. Kim, Y. Du, and S. Puria, Effects of ear-canal pressurization on middle-ear bone- and air-conduction responses, Hearing Res. 263, 204 (2010).

    Article  Google Scholar 

  39. P. Ferris, and P. J. Prendergast, Middle-ear dynamics before and after ossicular replacement, J. BioMech. 33, 581 (2000).

    Article  Google Scholar 

  40. R. Z. Gan, B. Feng, and Q. Sun, Three-dimensional finite element modeling of human ear for sound transmission, Ann. Biomed. Eng. 32, 847 (2004).

    Article  Google Scholar 

  41. R. Z. Gan, Q. Sun, B. Feng, and M. W. Wood, Acoustic-structural coupled finite element analysis for sound transmission in human ear — Pressure distributions, Med. Eng. Phys. 28, 395 (2006).

    Article  Google Scholar 

  42. J. Fay, S. Puria, W. F. Decraemer, and C. Steele, Three approaches for estimating the elastic modulus of the tympanic membrane, J. Biomech. 38, 1807 (2005).

    Article  Google Scholar 

  43. C. F. Lee, P. R. Chen, W. J. Lee, Y. F. Chou, J. H. Chen, and T. C. Liu, Computer aided modeling of human mastoid cavity biomechanics using finite element analysis, Eurasip J. Adv. Sig. Pr. 2010, 203037 (2009).

    Article  Google Scholar 

  44. D. J. Kelly, P. J. Prendergast, and A. W. Blayney, The effect of prosthesis design on vibration of the reconstructed ossicular chain: A comparative finite element analysis of four prostheses, Otol. Neurotol. 24, 11 (2003).

    Article  Google Scholar 

  45. J. P. Vard, D. J. Kelly, A. W. Blayney, and P. J. Prendergast, The influence of ventilation tube design on the magnitude of stress imposed at the implant/tympanic membrane interface, Med. Eng. Phys. 30, 154 (2008).

    Article  Google Scholar 

  46. K. N. O’Connor, H. Cai, and S. Puria, The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model, J. Acoust. Soc. Am. 142, 2836 (2017).

    Article  Google Scholar 

  47. G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity 61, 1 (2000).

    Article  MathSciNet  Google Scholar 

  48. W. F. Decraemer, and W. R. J. Funnell, Anatomical and mechanical properties of the tympanic membrane, in: Chronic Otitis Media: Pathogenesisoriented Therapeutic Management (Kugler Publications, The Hague, 2008).

    Google Scholar 

  49. D. J. Lim, Human tympanic membrane, Acta Oto-Laryngol. 70, 176 (1970).

    Article  Google Scholar 

  50. Z. Hussain, and R. Pei, Necessities, opportunities, and challenges for tympanic membrane perforation scaffolding-based bioengineering, Biomed. Mater. 16, 032004 (2021).

    Article  Google Scholar 

  51. D. J. Lim, Structure and function of the tympanic membrane: A review, Acta Otorhinolaryngol. Belg. 49, 101 (1995).

    Google Scholar 

  52. B. M. Teh, R. J. Marano, Y. Shen, P. L. Friedland, R. J. Dilley, and M. D. Atlas, Tissue engineering of the tympanic membrane, Tissue Eng. Part B-Re. 19, 116 (2013).

    Article  Google Scholar 

  53. T. Shimada, and D. J. Lim, The fiber arrangement of the human tympanic membrane: A scanning electron microscopic observation, Ann Otol Rhinol Laryn. 80, 210 (1971).

    Article  Google Scholar 

  54. F. S. M. Pires, Structural intensity assessment & material identification of a human tympanic membran, Dissertation for the Doctoral Degree (University of Antwerp, Belgium, 2020).

    Google Scholar 

  55. P. A. L. S. Martins, R. M. Natal Jorge, and A. J. M. Ferreira, A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues, Strain 42, 135 (2006).

    Article  Google Scholar 

  56. S. Standring, External and middle ear, in: Gray’s Anatomy: The Anatomical Basis of Clinical Practice (Elsevier, Amsterdam, 2015).

    Google Scholar 

  57. J. McCall, Genetic algorithms for modelling and optimisation, J. Comput. Appl. Math. 184, 205 (2005).

    Article  MathSciNet  Google Scholar 

  58. N. Harb, N. Labed, M. Domaszewski, and F. Peyraut, A new parameter identification method of soft biological tissue combining genetic algorithm with analytical optimization, Comput. Method. Appl. M. 200, 208 (2011).

    Article  MathSciNet  Google Scholar 

  59. J. Liang, W. G. Engles, K. D. Smith, C. Dai, and R. Z. Gan, Mechanical properties of baboon tympanic membrane from young to adult, Jaro-J. Assoc. Res. Oto. 21, 395 (2020).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11972205, 11921002, and 11972210).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Shuyi Xiang Conceptualization, Methodology, Data curation, Validation, Formal analysis, Writing–original draft. Zhibo Du Methodology, Data curation, Software, Formal analysis. Huibin Shi Investigation, Resources, Validation. Ziming Yan Methodology, Software. Yongtao Sun Resources, Validation. Jie Wang Resources, Validation. Zhanli Liu Conceptualization, Methodology, Funding acquisition, Supervision, Writing–review & editing.

Corresponding author

Correspondence to Zhanli Liu  (柳占立).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Du, Z., Shi, H. et al. A fiber-reinforced mesoscale constitutive model of tympanic membrane considering anisotropic deformation. Acta Mech. Sin. 40, 623590 (2024). https://doi.org/10.1007/s10409-024-23590-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-024-23590-x

Navigation