Skip to main content
Log in

Accelerating spectral digital image correlation computation with Taylor series image reconstruction

利用泰勒级数加速图像重建过程的频域数字图像相关方法

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, we introduce an accelerating algorithm based on the Taylor series for reconstructing target images in the spectral digital image correlation method (SDIC). The Taylor series image reconstruction method is employed instead of the previous direct Fourier transform (DFT) image reconstruction method, which consumes the majority of the computational time for target image reconstruction. The partial derivatives in the Taylor series are computed using the fast Fourier transform (FFT) of the entire image, following the principles of Fourier transform theory. To examine the impact of different orders of Taylor series expansion on accuracy and efficiency, we employ third- and fourth-order Taylor series image reconstruction methods and compare them with the DFT image reconstruction method through simulated experiments. As a result of these enhancements, the computational efficiency using the third- and fourth-order Taylor series improves by factors of 57 and 46, respectively, compared to the previous method. In terms of analysis accuracy, within a strain range of 0–0.1 and without the addition of image noise, the accuracy of the proposed method increases with higher expansion orders, surpassing that of the DFT image reconstruction method when the fourth order is utilized. However, when different levels of Gaussian noise are applied to simulated images individually, the accuracy of the third- or fourth-order Taylor series expansion method is superior to that of the DFT reconstruction method. Finally, we present the analyzed experimental results of a silicone rubber plate specimen with bilateral cracks under uniaxial tension.

摘要

本文介绍了一种基于泰勒级数的图像重建加速算法, 用于频域数字图像相关方法(SDIC)中对目标图像的重建. 泰勒级数图像重 建方法取代了之前的直接傅里叶变换(DFT)图像重建方法, 后者在对目标图像的重建过程中消耗了大量的计算时间. 泰勒级数中偏导 数的计算过程依托于傅里叶变换的理论原理, 通过对整个图像进行快速傅里叶变换(FFT)计算得到. 为了验证泰勒级数展开的不同阶 数对精度和效率的影响, 我们采用了三阶和四阶泰勒级数图像重建方法对模拟实验进行了分析, 并与DFT图像重建方法进行了比较. 由于这些改进, 使用三阶和四阶泰勒级数的图像重建方法在计算效率方面与DFT方法相比分别提高了57和46倍. 在分析精度方面, 在 应变范围为0–0.1且不添加图像噪声的情况下, 所提方法的精度随着扩展阶数的增加而提高. 当展开为四阶时, 其分析精度超过了DFT 图像重建方法. 此外, 当对模拟图像分别单独施加不同程度的高斯噪声时, 三阶和四阶泰勒级数展开方法的精度皆优于DFT方法. 最后, 我们给出了单轴拉伸条件下存在双侧裂纹的硅橡试样的分析实验结果.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. I. Yamaguchi, A laser-speckle strain gauge, J. Phys. E-Sci. Instrum. 14, 1270 (1981).

    Article  Google Scholar 

  2. W. H. Peters, and W. F. Ranson, Digital imaging techniques in experimental stress analysis, Opt. Eng 21, 427 (1982).

    Article  Google Scholar 

  3. M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, Determination of displacements using an improved digital correlation method, Image Vision Comput. 1, 133 (1983).

    Article  Google Scholar 

  4. S. Alshammrei, B. Lin, and J. Tong, Full-field experimental and numerical characterisation of a growing fatigue crack in a stainless steel, Int. J. Fatigue 133, 105449 (2020).

    Article  Google Scholar 

  5. B. Chen, and B. Pan, Camera calibration using synthetic random speckle pattern and digital image correlation, Optics Lasers Eng. 126, 105919 (2020).

    Article  Google Scholar 

  6. Z. Gao, F. Li, Y. Liu, T. Cheng, Y. Su, Z. Fang, M. Yang, Y. Li, J. Yu, and Q. Zhang, Tunnel contour detection during construction based on digital image correlation, Optics Lasers Eng. 126, 105879 (2020).

    Article  Google Scholar 

  7. Y. Arai, and S. Sakata, Microscopic full field strain measurement of unidirectionally fiber reinforced plastics with the Kriging-digital image correlation and region splitting method, Compos. Struct. 260, 113513 (2021).

    Article  Google Scholar 

  8. R. Janeliukstis, and X. Chen, Review of digital image correlation application to large-scale composite structure testing, Compos. Struct. 271, 114143 (2021).

    Article  Google Scholar 

  9. C. R. Firminger, and W. B. Edwards, Effects of cyclic loading on the mechanical properties and failure of human patellar tendon, J. BioMech. 120, 110345 (2021).

    Article  Google Scholar 

  10. M. S. Genç, H. Demir, M. Özden, and T. M. Bodur, Experimental analysis of fluid-structure interaction in flexible wings at low Reynolds number flows, Aircr. Eng. Aerosp. Technol. 93, 1060 (2021).

    Article  Google Scholar 

  11. H. Al-Salih, M. Juno, W. Collins, C. Bennett, and J. Li, Application of a digital image correlation bridge inspection methodology on geometrically complex bifurcated distortion - induced fatigue cracking, Fatigue Fract. Eng. Mat. Struct. 44, 3186 (2021).

    Article  Google Scholar 

  12. S. Gul, I. E. Tabrizi, B. S. Okan, A. Kefal, and M. Yildiz, An experimental investigation on damage mechanisms of thick hybrid composite structures under flexural loading using multi-instrument measurements, Ocean Eng. 117, 106921 (2021).

    Google Scholar 

  13. S. Tödter, H. E. Sheshtawy, J. Neugebauer, O. E. Moctar, and T. E. Schellin, Deformation measurement of a monopile subject to vortex-induced vibration using digital image correlation, Ocean Eng. 221, 108548 (2021).

    Article  Google Scholar 

  14. J. B. Kwak, and S. Chung, Advanced utilization of 3D digital image correlation for thermal and impact reliabilities of electronics components, Microelectron. Int. 38, 14 (2021).

    Article  Google Scholar 

  15. S. A. Soleimani, D. Konstantinidis, and G. P. Balomenos, Nondestructive assessment of elastomeric bridge bearings using 3D digital image correlation, J. Struct. Eng. 148, 04021233 (2022).

    Article  Google Scholar 

  16. R. Jiang, W. Zhang, L. Zhang, Y. Zhao, L. Zhang, and Y. Song, Strain localization and crack initiation behavior of a PM Ni-based superalloy: SEM-DIC characterization and crystal plasticity simulation, Fatigue Fract. Eng. Mat. Struct. 45, 1635 (2022).

    Article  Google Scholar 

  17. B. P. Kelly, C. R. Silva, J. N. Lehrman, A. G. U. Sawa, B. de Andrada Pereira, J. Godzik, and J. D. Turner, Use of digital imaging correlation techniques for full-field strain distribution analysis of implantable devices and tissue in spinal biomechanics research, J. BioMech. 135, 111025 (2022).

    Article  Google Scholar 

  18. T. Vermeij, J. A. C. Verstijnen, T. J. J. R. Y. Cantador, B. Blaysat, J. Neggers, and J. P. M. Hoefnagels, A nanomechanical testing framework yielding front&rear-sided, high-resolution, microstructure-correlated SEM-DIC strain fields, Exp. Mech. 62, 1625 (2022).

    Article  Google Scholar 

  19. S. Baker, and I. Matthews, Lucas-Kanade 20 years on: A unifying framework, Int. J. Comput. Vision 56, 221 (2004).

    Article  Google Scholar 

  20. S. Han, Y. He, J. Lei, Y. Xie, and Y. Yang, A strain mode spectral digital image correlation method for displacement field analysis, Acta Mech. Sin. 39, 422430 (2023).

    Article  MathSciNet  Google Scholar 

  21. P. L. Reu, E. Toussaint, E. Jones, H. A. Bruck, M. Iadicola, R. Balcaen, D. Z. Turner, T. Siebert, P. Lava, and M. Simonsen, DIC challenge: Developing images and guidelines for evaluating accuracy and resolution of 2D analyses, Exp. Mech. 58, 1067 (2017).

    Article  Google Scholar 

  22. S. Han, Y. He, J. Lei, Y. Tian, Y. Hu, Y. Xie, and Y. Yang, Analysis of displacement fields with large deformations using an improved spectral digital image correlation method, Optik 283, 170901 (2023).

    Article  Google Scholar 

  23. B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, Performance of sub-pixel registration algorithms in digital image correlation, Meas. Sci. Technol. 17, 1615 (2006).

    Article  Google Scholar 

  24. B. Pan, K. Li, and W. Tong, Fast, robust and accurate digital image correlation calculation without redundant computations, Exp. Mech. 53, 1277 (2013).

    Article  Google Scholar 

  25. B. Pan, and K. Li, A fast digital image correlation method for deformation measurement, Opt. Laser. Eng. 49, 841 (2011).

    Article  Google Scholar 

  26. Y. Gao, T. Cheng, Y. Su, X. Xu, Y. Zhang, and Q. Zhang, High-efficiency and high-accuracy digital image correlation for three-dimensional measurement, Opt. Laser. Eng. 65, 73 (2015).

    Article  Google Scholar 

  27. L. Zhang, T. Wang, Z. Jiang, Q. Kemao, Y. Liu, Z. Liu, L. Tang, and S. Dong, High accuracy digital image correlation powered by GPU-based parallel computing, Opt. Laser. Eng. 69, 7 (2015).

    Article  Google Scholar 

  28. J. W. Huang, L. Q. Zhang, Z. Y. Jiang, S. B. Dong, W. Chen, Y. P. Liu, Z. J. Liu, L. C. Zhou, and L. Q. Tang, Heterogeneous parallel computing accelerated iterative subpixel digital image correlation, Sci. China Tech. Sci. 61, 74 (2017).

    Article  Google Scholar 

  29. R. Wu, C. Kong, K. Li, and D. Zhang, Real-time digital image correlation for dynamic strain measurement, Exp. Mech. 56, 833 (2016).

    Article  Google Scholar 

  30. Z. Jiang, Q. Kemao, H. Miao, J. Yang, and L. Tang, Path-independent digital image correlation with high accuracy, speed and robustness, Opt. Laser. Eng. 65, 93 (2015).

    Article  Google Scholar 

  31. J. Yang, J. Huang, Z. Jiang, S. Dong, L. Tang, Y. Liu, Z. Liu, and L. Zhou, SIFT-aided path-independent digital image correlation accelerated by parallel computing, Optics Lasers Eng. 127, 105964 (2020).

    Article  Google Scholar 

  32. P. L. Reu, Experimental and numerical methods for exact subpixel shifting, Exp. Mech. 51, 443 (2010).

    Article  Google Scholar 

  33. D. J. Bone, H. A. Bachor, and R. J. Sandeman, Fringe-pattern analysis using a 2-D Fourier transform, Appl. Opt. 25, 1653 (1986).

    Article  Google Scholar 

  34. M. Takeda, H. Ina, and S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am. 72, 156 (1982).

    Article  Google Scholar 

  35. B. Wang, and B. Pan, Random errors in digital image correlation due to matched or overmatched shape functions, Exp. Mech. 55, 1717 (2015).

    Article  Google Scholar 

  36. B. Pan, A. Asundi, H. Xie, and J. Gao, Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements, Opt. Laser. Eng. 47, 865 (2009).

    Article  Google Scholar 

  37. T. C. Chu, W. F. Ranson, and M. A. Sutton, Applications of digital-image-correlation techniques to experimental mechanics, Exp. Mech. 25, 232 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12272145 and 11972013), the Ministry of Science and Technology of China (Grant No. 2018YFF01014200), and Hubei Provincial Natural Science Foundation of China (Grant No. 2022CFB288).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yuming He and Shihao Han designed the research. Yuming He, Shihao Han, and Jian Lei wrote the first draft of the manuscript. Shihao Han and Yiyu Hu set up the experimental device and processed the experiment data. Jian Lei and Yiyu Hu helped organize the manuscript. Yongbo Yang participated in experimental design and manuscript revision. Yuming He, Shihao Han, Jian Lei, Yiyu Hu, and Yongbo Yang revised and edited the final version.

Corresponding author

Correspondence to Yuming He  (何玉明).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., He, Y., Hu, Y. et al. Accelerating spectral digital image correlation computation with Taylor series image reconstruction. Acta Mech. Sin. 40, 423464 (2024). https://doi.org/10.1007/s10409-024-23464-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-024-23464-x

Navigation