Skip to main content
Log in

Decoupling analysis of stress components on monocrystalline silicon using angle-resolved oblique backscattering Raman spectroscopy

基于角度分辨倾斜背散射拉曼光谱的单晶硅应力分量解耦分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Stress is a key to controlling the electro-optical properties of semiconductor devices based on strain engineering. Micro-Raman spectroscopy is regarded as an effective technique of non-destructive measurement for the stress in semiconductor material. What the results using traditional Raman methods, however, are usually the sum of in-plane principal stress, or some form of equivalent stress, on a specific crystal plane. It is regarded far from possible to detect any stress components using Raman on a random crystal plane. This work presented a method of stress analysis based on angle-resolved oblique backscattering micro-Raman spectroscopy. A general physical-mechanical model was proposed by solving the equation of lattice dynamics in the sample coordinate system and then performing Raman selection in the eigenvector coordinate system. Using this model and considering the factors including refraction, polarization diversion, and numerical aperture (NA), this work established the analytic relationship between the increment of polarized Raman shift and all the stress components on a random crystal plane (taking {100} plane of monocrystalline silicon as an example) under any stress state. The stress component results of verification experiments quite agreed with their corresponding theoretical resolutions. It proved that the proposed method based on angle-resolved oblique backscattering micro-Raman spectroscopy, including both the model and the device, solved the widely recognized problem that the stress components of monocrystalline silicon, especially on {100} crystal plane, could not be decoupled by Raman.

摘要

对于应变工程而言, 应力是控制半导体器件光电性能的关键. 显微拉曼光谱是一种有效的半导体材料应力无损分析技术. 然而, 使用传统拉曼方法得到的结果通常是特定晶体/特定晶面的面内等效应力或主应力和. 本文提出了一种基于角度分辨倾斜背散射显微 拉曼光谱的应力分析方法. 通过在样品坐标系中求解晶格动力学方程, 在特征向量坐标系中进行拉曼选择, 提出了一种通用的物理力 学模型. 利用该模型, 考虑折射率、转偏和数值孔径影响等因素, 建立了任意应力状态下任意晶面(以单晶硅{100}面为例)上偏振拉曼 频移与各应力分量的解析关系. 验证实验表明, 应力分量的分析结果与施加的应力状态非常吻合. 证明了基于角度分辨倾斜背散射显 微拉曼光谱的方法、模型和仪器, 能够解决单晶硅特别是{100}晶面上的应力分量不能通过拉曼测量解耦的普遍问题.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Jassi, R. Gurunath, and S. Sundar Kumar Iyer, Degradation study of organic semiconductor devices under electrical and optical stresses, IEEE Electron Device Lett. 29, 442 (2008).

    Article  Google Scholar 

  2. T. Nuytten, J. Bogdanowicz, T. Hantschel, A. Schulze, P. Favia, H. Bender, I. De Wolf, and W. Vandervorst, Advanced Raman spectroscopy using nanofocusing of light, Adv. Eng. Mater. 19, 1600612 (2017).

    Article  Google Scholar 

  3. Y. Wan, Y. Liu, C. Hu, J. Yao, F. Wang, and B. Yang, The failure mechanism of curved composite laminates subjected to low-velocity impact, Acta Mech. Sin. 39, 423113 (2023).

    Article  Google Scholar 

  4. J. Nance, G. Subhash, B. Sankar, R. Haftka, N. H. Kim, C. Deck, and S. Oswald, Measurement of residual stress in silicon carbide fibers of tubular composites using Raman spectroscopy, Acta Mater. 217, 117164 (2021).

    Article  Google Scholar 

  5. M. Göltz, T. Helmreich, R. Börner, T. Kupfer, A. Schubert, and S. Rosiwal, Spatial distribution of thermally induced residual stresses in HF-CVD diamond coatings on microstructured steel surfaces, Diamond Relat. Mater. 136, 109931 (2023).

    Article  Google Scholar 

  6. A. Azizimanesh, T. Peña, A. Sewaket, W. Hou, and S. M. Wu, Uniaxial and biaxial strain engineering in 2D MoS2 with lithographically patterned thin film stressors, Appl. Phys. Lett. 118, 213104 (2021).

    Article  Google Scholar 

  7. T. Miyatake, and G. Pezzotti, Tensor-resolved stress analysis in silicon MEMS device by polarized Raman spectroscopy, Phys. Status Solidi (a) 208, 1151 (2011).

    Article  Google Scholar 

  8. M. Shafiq, and G. Subhash, A novel technique for the determination of surface biaxial stress under external confinement using Raman spectroscopy, Exp. Mech. 54, 763 (2014).

    Article  Google Scholar 

  9. I. de Wolf, J. Chen, M. Rasras, W. M. van Spengen, and V. Simons, High-resolution stress and temperature measurements in semiconductor devices using micro-Raman spectroscopy, Proc. SPIE Int. Soc. Opt. Eng. 3897, 239 (1999).

    Google Scholar 

  10. H. K. Kim, S. I. Kim, S. Kim, N. S. Lee, H. K. Shin, and C. W. Lee, Relation between work function and structural properties of triangular defects in 4H-SiC epitaxial layer: Kelvin probe force microscopic and spectroscopic analyses, Nanoscale 12, 8216 (2020).

    Article  Google Scholar 

  11. X. Wang, Y. Zhang, S. Liu, and Z. Zhao, Depth profiling by Raman spectroscopy of high-energy ion irradiated silicon carbide, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 319, 55 (2014).

    Article  Google Scholar 

  12. R. Loudon, The Raman effect in crystals, Adv. Phys. 13, 423 (1964).

    Article  Google Scholar 

  13. E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, Effect of static uniaxial stress on the Raman spectrum of silicon, Solid State Commun. 8, 133 (1970).

    Article  Google Scholar 

  14. S. Ganesan, A. A. Maradudin, and J. Oitmaa, A lattice theory of morphic effects in crystals of the diamond structure, Ann. Phys. 56, 556 (1970).

    Article  Google Scholar 

  15. E. Anastassakis, A. Cantarero, and M. Cardona, Piezo-Raman measurements and anharmonic parameters in silicon and diamond, Phys. Rev. B 41, 7529 (1990).

    Article  Google Scholar 

  16. J. Cai, Y. S. Raptis, and E. Anastassakis, Stabilized cubic zirconia: A Raman study under uniaxial stress, Appl. Phys. Lett. 62, 2781 (1993).

    Article  Google Scholar 

  17. E. Anastassakis, Selection rules of Raman scattering by optical phonons in strained cubic crystals, J. Appl. Phys. 82, 1582 (1997).

    Article  Google Scholar 

  18. G. Kaltsas, A. G. Nassiopoulou, M. Siakavellas, and E. Anastassakis, Stress effect on suspended polycrystalline silicon membranes fabricated by micromachining of porous silicon, Sens. Actuat. A-Phys. 68, 429 (1998).

    Article  Google Scholar 

  19. G. Pezzotti, K. Okai, and W. Zhu, Stress tensor dependence of the polarized Raman spectrum of tetragonal barium titanate, J. Appl. Phys. 111, 013504 (2012).

    Article  Google Scholar 

  20. G. Pezzotti, and W. Zhu, Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina, Phys. Chem. Chem. Phys. 17, 2608 (2015).

    Article  Google Scholar 

  21. H. Sakakima, S. Takamoto, Y. Murakami, A. Hatano, A. Goryu, K. Hirohata, and S. Izumi, Development of a method to evaluate the stress distribution in 4H-SiC power devices, Jpn. J. Appl. Phys. 57, 106602 (2018).

    Article  Google Scholar 

  22. I. de Wolf, Stress measurements in Si microelectronics devices using Raman spectroscopy, J. Raman Spectrosc. 30, 877 (1999).

    Article  Google Scholar 

  23. I. de Wolf, H. E. Maes, and S. K. Jones, Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment, J. Appl. Phys. 79, 7148 (1996).

    Article  Google Scholar 

  24. A. Dychalska, K. Fabisiak, K. Paprocki, A. Dudkowiak, and M. Szybowicz, Temperature dependence of stress in CVD diamond films studied by Raman spectroscopy, Mater. Sci.-Poland 33, 620 (2015).

    Article  Google Scholar 

  25. G. A. Myers, S. S. Hazra, M. P. de Boer, C. A. Michaels, S. J. Stranick, R. P. Koseski, R. F. Cook, and F. W. DelRio, Stress mapping of micromachined polycrystalline silicon devices via confocal Raman microscopy, Appl. Phys. Lett. 104, 191908 (2014).

    Article  Google Scholar 

  26. A. Gassenq, S. Tardif, K. Guilloy, G. Osvaldo Dias, N. Pauc, I. Duchemin, D. Rouchon, J. M. Hartmann, J. Widiez, J. Escalante, Y. M. Niquet, R. Geiger, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, F. Rieutord, V. Reboud, and V. Calvo, Accurate strain measurements in highly strained Ge microbridges, Appl. Phys. Lett. 108, 241902 (2016).

    Article  Google Scholar 

  27. S. Schoeche, D. Schmidt, M. Cheng, A. Cepler, A. Arceo de la Pena, and J. Oakley, TSV stress evolution mapping using in-line Raman spectroscopy, Proc. SPIE 12496, 12496D (2023).

    Google Scholar 

  28. F. Demangeot, J. Frandon, M. A. Renucci, O. Briot, B. Gil, and R. L. Aulombard, Raman determination of phonon deformation potentials in α-GaN, Solid State Commun. 100, 207 (1996).

    Article  Google Scholar 

  29. W. Qiu, and Y. L. Kang, Mechanical behavior study of microdevice and nanomaterials by Raman spectroscopy: A review, Chin. Sci. Bull. 59, 2811 (2014).

    Article  Google Scholar 

  30. W. Qiu, L. Ma, Q. Li, H. Xing, C. Cheng, and G. Huang, A general metrology of stress on crystalline silicon with random crystal plane by using micro-Raman spectroscopy, Acta Mech. Sin. 34, 1095 (2018).

    Article  MathSciNet  Google Scholar 

  31. L. Ma, X. Fan, and W. Qiu, Polarized Raman spectroscopy-stress relationship considering shear stress effect, Opt. Lett. 44, 4682 (2019).

    Article  Google Scholar 

  32. W. Qiu, L. Ma, H. D. Xing, C. L. Cheng, and G. Huang, Spectral characteristics of (111) silicon with Raman selections under different states of stress, AIP Adv. 7, 075002 (2017).

    Article  Google Scholar 

  33. D. H. Fu, X. Y. He, L. L. Ma, H. D. Xing, T. Meng, Y. Chang, and W. Qiu, The 2-axis stress component decoupling of {100} c-Si by using oblique backscattering micro-Raman spectroscopy, Sci. China-Phys. Mech. Astron. 63, 294612 (2020).

    Article  Google Scholar 

  34. Y. Chang, A. Xiao, R. Li, M. Wang, S. He, M. Sun, L. Wang, C. Qu, and W. Qiu, Angle-resolved intensity of polarized micro-Raman spectroscopy for 4H-SiC, Crystals 11, 626 (2021).

    Article  Google Scholar 

  35. M. A. Green, Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients, Sol. Energy Mater. Sol. Cells 92, 1305 (2008).

    Article  Google Scholar 

  36. W. Qiu, S. S. He, Y. Chang, L. L. Ma, and C. Y. Qu, Error analysis for stress component characterization based on polarized raman spectroscopy, Exp. Mech. 62, 1007 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12125203, 12021002, and 11890680).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Ying Chang designed the research. Ying Chang wrote the first draft of the manuscript. Ying Chang, Saisai He, Mingyuan Sun, and Yuqi Zhao set up the experiment. Ying Chang and Saisai He set up and processed the experiment data. Wei Qiu and Lulu Ma helped organize the manuscript. Ying Chang and Wei Qiu revised and edited the final version

Corresponding author

Correspondence to Wei Qiu  (仇巍).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., He, S., Sun, M. et al. Decoupling analysis of stress components on monocrystalline silicon using angle-resolved oblique backscattering Raman spectroscopy. Acta Mech. Sin. 40, 423418 (2024). https://doi.org/10.1007/s10409-023-23418-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23418-x

Navigation