Skip to main content
Log in

Interphase heat transfer in radiatively heated particle-laden turbulent channel flows

辐射加热颗粒槽道湍流两相流的相间传热特性

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We investigated the interphase heat transfer characteristics in vertical turbulent channel flows laden with radiatively heated inertial particles considering the gravity of particles. Direct numerical simulation (DNS) combined with a Lagrangian point-particle strategy was carried out in the range of radiation intensity 1 ≤ q/q0 ≤ 20 and the Stokes number of particles 0.36 × 10−1Stf ≤ 2.16 × 10−1 for particle diameter 33 µm ≤ dp ≤ 81 µm. A two-way coupling model was adopted in which the momentum and heat exchange between the dispersed phase and the carrier phase were fully taken into account. It was found that when particles with small diameters encountered strong radiation significantly altered the heat transfer, so the fluid bulk temperature was remarkably heated. The theoretical expressions of the Nusselt number at the cold plate and the hot plate were derived from the time-average temperature equation of the fluid, which revealed that the interphase heat transfer caused the difference in heat transfer between the cold plate and the hot plate. We further found that interphase heat transfer increased linearly with the reciprocal of the particle diameter and the radiation intensity under the same mass fraction of particles.

摘要

本文采用直接数值模拟方法结合拉格朗日点-粒模型研究了携带辐射热惯性颗粒的竖直槽道湍流两相流相间传热特性. 研究中采用双向耦合模型描述分散相颗粒与流体之间的动量交换和热交换,辐射强度和颗粒Stokes数范围分别为 1≤ q/q0 ≤ 20, 0.36 × 10−1Stf ≤ 2.16 × 10−1. 研究发现辐射加热颗粒对流体的动力学调制加速了流体运动, 使湍流强度增大. 高辐射下的小Stokes数颗粒能显著加热流体. 我们从流场时均温度方程出发, 导出了两相流系统中相间传热Nusselt数的理论表达式, 理论分析表明相间传热引起冷板和热板Nusselt数的差异, 并进一步得到了相间传热效率与颗粒Stokes数及颗粒所受辐射强度的标度关系.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. X. Q. Wang, and A. S. Mujumdar, Heat transfer characteristics of nanofluids: A review, Int. J. Therm. Sci. 46, 1 (2007).

    Article  Google Scholar 

  2. R. Mittal, R. Ni, and J. H. Seo, The flow physics of COVID-19, J. Fluid Mech. 894, F2 (2020).

    Article  MathSciNet  Google Scholar 

  3. K. L. Chong, C. S. Ng, N. Hori, R. Yang, R. Verzicco, and D. Lohse, Extended lifetime of respiratory droplets in a turbulent vapor puff and its implications on airborne disease transmission, Phys. Rev. Lett. 126, 034502 (2021).

    Article  Google Scholar 

  4. J. M. Wu, H. Zhang, C. H. Yan, and Y. Wang, Experimental study on the performance of a novel fin-tube air heat exchanger with punched longitudinal vortex generator, Energy Convers. Manage. 57, 42 (2012).

    Article  Google Scholar 

  5. R. J. Goldstein, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulacki, U. Kortshagen, S. Garrick, and V. Srinivasan, Heat transfer—A review of 2003 literature, Int. J. Heat Mass Transfer 49, 451 (2005).

    Article  Google Scholar 

  6. B. Wang, Inter-phase interaction in a turbulent, vertical channel flow laden with heavy particles. Part I: Numerical methods and particle dispersion properties, Int. J. Heat Mass Transfer 53, 2506 (2010).

    Article  Google Scholar 

  7. H. Zhou, E. R. Hawkes, T. C. W. Lau, R. Chin, G. J. Nathan, and H. Wang, Understanding of turbulence modulation and particle response in a particle-laden jet from direct numerical simulations, J. Fluid Mech. 950, A3 (2022).

    Article  MathSciNet  Google Scholar 

  8. C. D. Dritselis, and N. S. Vlachos, Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow, Phys. Fluids 23, 025103 (2011).

    Article  Google Scholar 

  9. Z. Fu, and Y. Kawaguchi, A short review on drag-reduced turbulent flow of inhomogeneous polymer solutions, Adv. Mech. Eng. 5, 432949 (2013).

    Article  Google Scholar 

  10. J. J. J. Gillissen, Turbulent drag reduction using fluid spheres, J. Fluid Mech. 716, 83 (2013).

    Article  MathSciNet  Google Scholar 

  11. Z. Xia, P. Zhang, and X. I. A. Yang, On skin friction in wall-bounded turbulence, Acta Mech. Sin. 37, 589 (2021).

    Article  MathSciNet  Google Scholar 

  12. S. Schneiderbauer, and M. Saeedipour, The impact of interphase forces on the modulation of turbulence in multiphase flows, Acta Mech. Sin. 38, 721446 (2022).

    Article  MathSciNet  Google Scholar 

  13. W. Daungthongsuk, and S. Wongwises, A critical review of convective heat transfer of nanofluids, Renew. Sustain. Energy Rev. 11, 797 (2007).

    Article  Google Scholar 

  14. B. Lessani, and M. H. Nakhaei, Large-eddy simulation of particle-laden turbulent flow with heat transfer, Int. J. Heat Mass Transfer 67, 974 (2013).

    Article  Google Scholar 

  15. J. G. M. Kuerten, C. W. M. van der Geld, and B. J. Geurts, Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow, Phys. Fluids 23, 123301 (2011).

    Article  Google Scholar 

  16. W. Yang, B. F. Wang, S. Tang, Q. Zhou, and Y. Dong, Transport modes of inertial particles and their effects on flow structures and heat transfer in Rayleigh-Bénard convection, Phys. Fluids 34, 43309 (2022).

    Article  Google Scholar 

  17. P. Heller, M. Pfänder, T. Denk, F. Tellez, A. Valverde, J. Fernandez, and A. Ring, Test and evaluation of a solar powered gas turbine system, Sol. Energy 80, 1225 (2006).

    Article  Google Scholar 

  18. C. Huang, and A. T-Raissi, Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production, Part I: decomposition of sulfuric acid, Sol. Energy 78, 632 (2005).

    Article  Google Scholar 

  19. M. Romero, R. Buck, and J. E. Pacheco, An update on solar central receiver systems, projects, and technologies, J. Sol. Energy Eng. 124, 98 (2002).

    Article  Google Scholar 

  20. J. Martinek, and A. W. Weimer, Evaluation of finite volume solutions for radiative heat transfer in a closed cavity solar receiver for high temperature solar thermal processes, Int. J. Heat Mass Transfer 58, 585 (2013).

    Article  Google Scholar 

  21. B. Gobereit, L. Amsbeck, R. Buck, R. Pitz-Paal, M. Röger, and H. Müller-Steinhagen, Assessment of a falling solid particle receiver with numerical simulation, Sol. Energy 115, 505 (2015).

    Article  Google Scholar 

  22. J. Marti, A. Haselbacher, and A. Steinfeld, A numerical investigation of gas-particle suspensions as heat transfer media for high-temperature concentrated solar power, Int. J. Heat Mass Transfer 90, 1056 (2015).

    Article  Google Scholar 

  23. D. W. I. Rouson, and J. K. Eaton, On the preferential concentration of solid particles in turbulent channel flow, J. Fluid Mech. 428, 149 (2001).

    Article  Google Scholar 

  24. R. Zamansky, F. Coletti, M. Massot, and A. Mani, Radiation induces turbulence in particle-laden fluids, Phys. Fluids 26, 71701 (2014).

    Article  Google Scholar 

  25. H. Pouransari, and A. Mani, Effects of preferential concentration on heat transfer in particle-based solar receivers, J. Sol. Energy Eng. 139, 021008 (2017).

    Article  Google Scholar 

  26. A. J. Banko, L. Villafañe, J. H. Kim, and J. K. Eaton, Temperature statistics in a radiatively heated particle-laden turbulent square duct flow, Int. J. Heat Fluid Flow 84, 108618 (2020).

    Article  Google Scholar 

  27. M. Pan, Y. Dong, Q. Zhou, and L. Shen, Flow modulation and heat transport of radiatively heated particles settling in Rayleigh–Bénard convection, Comput. Fluids 241, 105454 (2022).

    Article  Google Scholar 

  28. W. Yang, Z. H. Wan, Q. Zhou, and Y. Dong, On the energy transport and heat transfer efficiency in radiatively heated particle-laden Rayleigh-Bénard convection, J. Fluid Mech. 953, A35 (2022).

    Article  Google Scholar 

  29. S. Elghobashi, Direct numerical simulation of turbulent flows laden with droplets or bubbles, Annu. Rev. Fluid Mech. 51, 217 (2019).

    Article  MathSciNet  Google Scholar 

  30. A. Frankel, G. Iaccarino, and A. Mani, Optical depth in particle-laden turbulent flows, J. Quant. Spectr. Radiative Transfer 201, 10 (2017).

    Article  Google Scholar 

  31. S. Balachandar, and J. K. Eaton, Turbulent dispersed multiphase flow, Annu. Rev. Fluid Mech. 42, 111 (2010).

    Article  Google Scholar 

  32. W. E. Ranz, Evaporation from Drops-I and-II, Chem. Eng. Progr. 48, 141 (1952).

    Google Scholar 

  33. C. Liu, S. Tang, L. Shen, and Y. Dong, Characteristics of turbulence transport for momentum and heat in particle-laden turbulent vertical channel flows, Acta Mech. Sin. 33, 833 (2017).

    Article  MathSciNet  Google Scholar 

  34. R. Verzicco, P. Orlandi, A. H. M. Eisenga, G. J. F. van Heijst, and G. F. Carnevale, Dynamics of a vortex ring in a rotating fluid, J. Fluid Mech. 317, 215 (1996).

    Article  Google Scholar 

  35. W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial: Second Edition (Society for Industrial and Applied Mathematics, Philadelphia, 2000).

    Book  Google Scholar 

  36. C. Liu, S. Tang, Y. Dong, and L. Shen, Heat transfer modulation by inertial particles in particle-laden turbulent channel flow, J. Heat Transfer 140, 112003 (2018).

    Article  Google Scholar 

  37. W. Yang, Y. Z. Zhang, B. F. Wang, Y. Dong, and Q. Zhou, Dynamic coupling between carrier and dispersed phases in Rayleigh-Bénard convection laden with inertial isothermal particles, J. Fluid Mech. 930, A24 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12172207 and 92052201).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Xiaofeng Tang: Programming, Data analysis, Validation, Visualization, Writing–original draft & editing. Ming Pan: Data analysis. Wenwu Yang: Methodology, Programming. Yuhong Dong: Conceptualization, Methodology, Review & editing, Project administration, Funding acquisition.

Corresponding author

Correspondence to Yuhong Dong  (董宇红).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Pan, M., Yang, W. et al. Interphase heat transfer in radiatively heated particle-laden turbulent channel flows. Acta Mech. Sin. 40, 323389 (2024). https://doi.org/10.1007/s10409-023-23389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23389-x

Navigation