Skip to main content
Log in

The impact of interphase forces on the modulation of turbulence in multiphase flows

相间力对多相流湍流调制的影响

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The modulation of turbulence by particles has been rigorously investigated in the literature yielding either a reduction or an enhancement of the turbulent kinetic energy at different spatial length scales. However, a general description of the turbulence modulation in multiphase flows due to the presence of an interphase force has attracted less attention. In this paper, we investigate the turbulent modulation for interfacial and fluid-particle flows analytically and numerically, where surface tension and drag define the interphase coupling, respectively. It is shown that surface tension and drag appear as additional production/dissipation terms in the transport equations for the turbulent kinetic energies (TKE), which is of particular importance for the turbulence modelling of multiphase flows. Furthermore, we study the modulation of turbulence in decaying homogenous isotropic turbulence (HIT) for both types of multiphase flow. The results clearly unveil that in both cases the energy is reduced at large scales, while the small-scale energy is enhanced compared to single-phase flows. Particularly, at large scales surface tension works against the turbulent eddies and hinders the ejection of droplet from the corrugated interface. In contrast, at the small scales, the surface tension force and the velocity fluctuations are aligned leading to an enhancement of the energy. In the case of fluid-particle flows, particles retain their energy longer than the surrounding fluid increasing the energy at the small scales, while at the large scales the particles do not follow exactly the surrounding fluid reducing its energy. For the latter effect, a considerable dependence on the particle Stokes number is found.

摘要

现有文献对于粒子对湍流的调制已经进行了严格的研究, 在不同的空间长度尺度上产生了湍流动能的减小或增强. 然而, 由于 界面力的存在, 对多相流中湍流调制的一般描述没有引起足够的重视. 本文用解析和数值方法研究了界面和流体颗粒流的湍流调制, 其中表面张力和阻力分别定义了界面相耦合. 结果表明, 表面张力和表面阻力在湍流动能的输运方程中是附加的产生/耗散项, 这对多 相流的湍流模拟特别重要. 此外, 我们还研究了两种类型的多相流在衰减均匀各向同性湍流中的湍流调制. 结果表明, 在这两种情况下, 能量在大尺度上减小, 而小尺度能量比单相流增强. 特别是, 在大尺度下, 表面张力作用于湍流涡流, 并阻碍了水滴从波纹界面的喷射. 相反, 在小尺度上, 表面张力和速度波动是一致的, 导致能量的增强. 在流体-粒子流的情况下, 粒子在小尺度上比周围流体保持更长的 能量, 而在大尺度上粒子并不完全遵循周围流体减少能量的规律. 对于后者的效果, 相当依赖于粒子斯托克斯数.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Trontin, S. Vincent, J. L. Estivalezes, and J. P. Caltagirone, Direct numerical simulation of a freely decaying turbulent interfacial flow, Int. J. Multiphase Flow 36, 891 (2010).

    Article  Google Scholar 

  2. M. Saeedipour, and S. Schneiderbauer, A new approach to include surface tension in the subgrid eddy viscosity for the two-phase LES, Int. J. Multiphase Flow 121, 103128 (2019).

    Article  MathSciNet  Google Scholar 

  3. M. Saeedipour, and S. Schneiderbauer, Favre-filtered LES-VOF of two-phase flows with eddy viscosity-based subgrid closure models: An a-posteriori analysis, Int. J. Multiphase Flow 144, 103780 (2021).

    Article  MathSciNet  Google Scholar 

  4. A. Ferrante, and S. Elghobashi, On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence, Phys. Fluids 15, 315 (2003).

    Article  Google Scholar 

  5. P. Fede, and O. Simonin, Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles, Phys. Fluids 18, 045103 (2006).

    Article  Google Scholar 

  6. R. Letournel, F. Laurent, M. Massot, and A. Vié, Modulation of homogeneous and isotropic turbulence by sub-Kolmogorov particles: Impact of particle field heterogeneity, Int. J. Multiphase Flow 125, 103233 (2020).

    Article  MathSciNet  Google Scholar 

  7. B. Ray, and L. R. Collins, Preferential concentration and relative velocity statistics of inertial particles in Navier-Stokes turbulence with and without filtering, J. Fluid Mech. 680, 488 (2011).

    Article  MathSciNet  Google Scholar 

  8. A. H. Abdelsamie, and C. Lee, Decaying versus stationary turbulence in particle-laden isotropic turbulence: Turbulence modulation mechanism, Phys. Fluids 24, 015106 (2012).

    Article  Google Scholar 

  9. S. Schneiderbauer, A spatially-averaged two-fluid model for dense large-scale gas-solid flows, AIChE J. 63, 3544 (2017).

    Article  Google Scholar 

  10. J. Capecelatro, O. Desjardins, and R. O. Fox, Strongly coupled fluid-particle flows in vertical channels. II. Turbulence modeling, Phys. Fluids 28, 033307 (2016).

    Article  Google Scholar 

  11. S. Rauchenzauner, and S. Schneiderbauer, A dynamic anisotropic Spatially-Averaged Two-Fluid Model for moderately dense gas-particle flows, Int. J. Multiphase Flow 126, 103237 (2020).

    Article  MathSciNet  Google Scholar 

  12. Y. Jiang, J. Kolehmainen, Y. Gu, Y. G. Kevrekidis, A. Ozel, and S. Sundaresan, Neural-network-based filtered drag model for gas-particle flows, Powder Tech. 346, 403 (2019).

    Article  Google Scholar 

  13. M. Jiang, X. Chen, and Q. Zhou, A gas pressure gradient-dependent subgrid drift velocity model for drag prediction in fluidized gas-particle flows, AIChE J 66, (2020).

  14. Y. Jiang, X. Chen, J. Kolehmainen, I. G. Kevrekidis, A. Ozel, and S. Sundaresan, Development of data-driven filtered drag model for industrial-scale fluidized beds, Chem. Eng. Sci. 230, 116235 (2021).

    Article  Google Scholar 

  15. R. O. Fox, in Advanced Approaches in Turbulence—Theory, Modeling, Simulation, and Data Analysis for Turbulent Flows, edited by P. Durbin (Elsevier, Amsterdam, 2021), pp. 307–372.

  16. J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100, 335 (1992).

    Article  MathSciNet  Google Scholar 

  17. M. Saeedipour, S. Vincent, and J. L. Estivalezes, Toward a fully resolved volume of fluid simulation of the phase inversion problem, Acta Mech. 232, 2695 (2021).

    Article  Google Scholar 

  18. M. Ishii, Thermo-fluid dynamic theory of two-phase flow, Collection de la Direction des Etudes et recherches d’Electricite de France (Eyrolles, Paris, 1975).

    Google Scholar 

  19. B. G. M. van Wachem, J. C. Schouten, C. M. van den Bleek, R. Krishna, and J. L. Sinclair, Comparative analysis of CFD models of dense gas-solid systems, AIChE J. 47, 1035 (2001).

    Article  Google Scholar 

  20. S. Schneiderbauer, A. Aigner, and S. Pirker, A comprehensive frictional-kinetic model for gas-particle flows: Analysis of fluidized and moving bed regimes, Chem. Eng. Sci. 80, 279 (2012).

    Article  Google Scholar 

  21. C. Y. Wen, and Y. H. Yu, Mechanics of fluidization, Chem. Eng. Prog. Symposium Ser. 62, 100 (1966).

    Google Scholar 

  22. F. Dabbagh, S. Pirker, and S. Schneiderbauer, On the fast modeling of species transport in fluidized beds using recurrence computational fluid dynamics, AIChE J 66, (2020).

  23. S. Schneiderbauer, and M. Saeedipour, Approximate deconvolution model for the simulation of turbulent gas-solid flows: An a priori analysis. Phys. Fluids 30, 023301 (2018).

    Article  Google Scholar 

  24. S. Rauchenzauner, and S. Schneiderbauer, A dynamic multiphase turbulence model for coarse-grid simulations of fluidized gas-particle suspensions. Chem. Eng. Sci. 247, 117104 (2022).

    Article  Google Scholar 

  25. P. Chassaing, R. A. Antonia, F. Anselmet, L. Joly, and S. Sarkar, Variable Density Fluid Turbulence (Springer Science+Business Media, Dordrecht, 2002).

    Book  Google Scholar 

  26. D. Taulbee, and J. VanOsdol, in Modeling turbulent compressible flows: The mass fluctuating velocity and squared density: Proceedings of the 29th Aerospace Sciences Meeting, AIAA-91–0524 (American Institute of Aeronautics and Astronautics, Reno, 1991).

    Google Scholar 

  27. J. Smagorinsky, General circulation experiments with the primitive equations, Mon. Wea. Rev. 91, 99 (1963).

    Article  Google Scholar 

  28. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A-Fluid Dyn. 3, 1760 (1991).

    Article  Google Scholar 

  29. J. Capecelatro, O. Desjardins, and R. O. Fox, On fluid-particle dynamics in fully developed cluster-induced turbulence, J. Fluid Mech. 780, 578 (2015).

    Article  MathSciNet  Google Scholar 

  30. J. O. McCaslin, and O. Desjardins, in Studying turbulence using numerical simulation databases—XV: Proceedings of the Summer Program 2014, edited by P. Moin, and J. Urzay (Center of Turbulence Research, Stanford, 2014), pp. 79–88.

  31. S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, UK 2000).

    Book  Google Scholar 

  32. P. K. Wu, and G. M. Faeth, Onset and end of drop formation along the surface of turbulent liquid jets in still gases, Phys. Fluids 7, 2915 (1995).

    Article  Google Scholar 

  33. M. Saeedipour, S. Pirker, S. Bozorgi, and S. Schneiderbauer, An Eulerian-Lagrangian hybrid model for the coarse-grid simulation of turbulent liquid jet breakup, Int. J. Multiphase Flow 82, 17 (2016).

    Article  MathSciNet  Google Scholar 

  34. M. Saeedipour, S. Schneiderbauer, G. Plohl, G. Brenn, and S. Pirker, Multiscale simulations and experiments on water jet atomization, Int. J. Multiphase Flow 95, 71 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Schneiderbauer.

Additional information

This work was supported by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development. The authors further want to acknowledge the funding support of K1-MET GmbH, metallurgical competence center. The research programme of the K1-MET competence center is supported by COMET (Competence Center for Excellent Technologies), the Austrian programme for competence centers. COMET is funded by the Federal Ministry for Transport, Innovation and Technology, the Federal Ministry for Digital and Economic Affairs and the provinces of Upper Austria, Tyrol and Styria. Beside the public funding from COMET, this research project is partially financed by the industrial partners Primetals Technologies Austria GmbH, voestalpine Stahl Donawitz GmbH, RHI Magnesita GmbH and voestalpine Stahl GmbH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneiderbauer, S., Saeedipour, M. The impact of interphase forces on the modulation of turbulence in multiphase flows. Acta Mech. Sin. 38, 721446 (2022). https://doi.org/10.1007/s10409-022-09035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-09035-z

Navigation