Skip to main content
Log in

Suppression of secondary droplet for high-definition drop-on-demand inkjet by actively regulating the channel acoustic waves

调控管道声波以主动抑制高精度喷墨打印中的次级液滴

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Drop-on-demand inkjet technology has played an irreplaceable role in various cutting-edge fields in the gaseous environment, which relies on the acoustic waves in the channel to dispense droplet. The droplet diameter is about 20–100 µm and is difficult to be further reduced. For the emerging high-resolution inkjet technology in a liquid environment based on the confined interface vibration triggered by acoustic waves in the printhead, the droplet size can be 10 times smaller than the orifice, which can also be facilely regulated. However, the residual vibrations of the confined interface will dispense secondary droplets when the stimulation is significant, interfering the uniformity of the printing results. Herein, a strategy that can regulate the interface behavior by manipulating the acoustic waves in the channel is proposed, which can achieve a significant main vibration while the residual vibrations are effectively suppressed. A mathematical model is constructed based on the experimental phenomenon to explain how the interface behavior is regulated. The influence of echo time on the interface vibrations, the mechanisms of how the residual vibrations affect the subsequent main vibration and primary droplet are revealed. This work provides a theoretical guidance for regulating droplet size and improving the printing resolution of inkjet in a liquid environment by regulating the acoustic waves in the channel, and demonstrates its practical application potential.

摘要

按需喷墨打印技术主要依赖于通道内的声波来实现液滴的喷射, 其在气体环境中的各前沿领域发挥了不可取代的作用. 喷墨打印液滴直径通常在20–100微米范围内, 难以进一步减小. 对于管道声波触发的受约束界面的振动而开发的新兴的液中高精度打印技术, 其可以产生小于喷嘴直径数十倍的液滴, 并可以灵活地调整液滴尺寸. 然而, 当激励很强的时候, 受约束界面的残余振动会产生次级液滴, 进而影响打印的均一性. 在此, 本文提出了通过调控管道声波进而调控界面行为的策略, 在实现显著主振动的同时有效抑制残余振动. 基于实验现象构建了数学模型以描述界面行为是如何调控的, 回波时间对界面振动的影响, 残余振动影响后续主振动和主液滴的机制都得到了较好的解释. 本文的工作为通过调控管道内的声波来调控液滴尺寸和改善打印精度提供了理论指导, 并证实了其实际应用的潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. Lohse, Fundamental fluid dynamics challenges in inkjet printing, Annu. Rev. Fluid Mech. 54, 349 (2022).

    Article  Google Scholar 

  2. B. Derby, Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution, Annu. Rev. Mater. Res. 40, 395 (2010).

    Article  Google Scholar 

  3. J. R. Castrejon-Pita, W. R. S. Baxter, J. Morgan, S. Temple, G. D. Martin, and I. M. Hutchings, Future, opportunities and challenges of inkjet technologies, Atomiz. Spr. 23, 541 (2013).

    Article  Google Scholar 

  4. H. Wijshoff, The dynamics of the piezo inkjet printhead operation, Phys. Rep. 491, 77 (2010).

    Article  Google Scholar 

  5. J. Eggers, Drop formation—an overview, Z. Angew. Math. Mech. 85, 400 (2005).

    Article  MathSciNet  Google Scholar 

  6. J. Eggers, and E. Villermaux, Physics of liquid jets, Rep. Prog. Phys. 71, 036601 (2008).

    Article  Google Scholar 

  7. O. A. Basaran, H. Gao, and P. P. Bhat, Nonstandard inkjets, Annu. Rev. Fluid Mech. 45, 85 (2013).

    Article  Google Scholar 

  8. A. Dadvand, M. Dawoodian, B. C. Khoo, and R. Esmaily, Spark-generated bubble collapse near or inside a circular aperture and the ensuing vortex ring and droplet formation, Acta Mech. Sin. 29, 657 (2013).

    Article  Google Scholar 

  9. H. J. J. Staat, A. van der Bos, M. van den Berg, H. Reinten, H. Wijshoff, M. Versluis, and D. Lohse, Ultrafast imaging method to measure surface tension and viscosity of inkjet-printed droplets in flight, Exp. Fluids 58, 2 (2017).

    Article  Google Scholar 

  10. D. Wan, and H. Xu, Experimental study on the motion of a spherical particle in a plane traveling sound wave, Acta Mech. Sin. 38, 721493 (2022).

    Article  Google Scholar 

  11. D. Quéré, Wetting and roughness, Annu. Rev. Mater. Res. 38, 71 (2008).

    Article  Google Scholar 

  12. D. Quéré, Leidenfrost dynamics, Annu. Rev. Fluid Mech. 45, 197 (2013).

    Article  MathSciNet  Google Scholar 

  13. S. Lin, B. Zhao, S. Zou, J. Guo, Z. Wei, and L. Chen, Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation, J. Colloid Interface Sci. 516, 86 (2018).

    Article  Google Scholar 

  14. Z. Yang, H. Tian, C. Wang, X. Li, X. Chen, X. Chen, and J. Shao, Actuation waveform optimization via multi-pulse crosstalk modulation for stable ultra-high frequency piezoelectric drop-on-demand printing, Addit. Manuf. 60, 103165 (2022).

    Google Scholar 

  15. R. Magazine, B. van Bochove, S. Borandeh, and J. Seppälä, 3D inkjet-printing of photo-crosslinkable resins for microlens fabrication, Addit. Manuf. 50, 102534 (2022).

    Google Scholar 

  16. A. Khan, K. Rahman, D. S. Kim, and K. H. Choi, Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process, J. Mater. Process. Tech. 212, 700 (2012).

    Article  Google Scholar 

  17. D. Zhao, H. Zhou, Y. Wang, J. Yin, and Y. Huang, Drop-on-demand (DOD) inkjet dynamics of printing viscoelastic conductive ink, Addit. Manuf. 48, 102451 (2021).

    Google Scholar 

  18. X. Zhou, H. Wu, H. Wen, and B. Zheng, Advances in single-cell printing, Micromachines 13, 80 (2022).

    Article  Google Scholar 

  19. P. Zhang, and A. R. Abate, High-definition single-cell printing: Cell-by-cell fabrication of biological structures, Adv. Mater. 32, 2005346 (2020).

    Article  Google Scholar 

  20. D. Wang, X. Zheng, X. Chen, and G. Hu, Flow-pattern-altered syntheses of core-shell and hole-shell microparticles in an axisymmetric microfluidic device, Acta Mech. Sin. 37, 1378 (2021).

    Article  Google Scholar 

  21. A. U. Chen, and O. A. Basaran, A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production, Phys. Fluids 14, L1 (2002).

    Article  Google Scholar 

  22. M. A. Shah, D. G. Lee, B. Y. Lee, N. W. Kim, H. An, and S. Hur, Actuating voltage waveform optimization of piezoelectric inkjet print-head for suppression of residual vibrations, Micromachines 11, 900 (2020).

    Article  Google Scholar 

  23. A. B. Aqeel, M. Mohasan, P. Lv, Y. Yang, and H. Duan, Effects of the actuation waveform on the drop size reduction in drop-on-demand inkjet printing, Acta Mech. Sin. 36, 983 (2020).

    Article  Google Scholar 

  24. H. Wang, and Y. Hasegawa, Multi-objective optimization of actuation waveform for high-precision drop-on-demand inkjet printing, Phys. Fluids 35, 013318 (2023), arXiv: 2208.11301.

    Article  Google Scholar 

  25. O. Oktavianty, T. Kyotani, S. Haruyama, and K. Kaminishi, New actuation waveform design of DoD inkjet printer for single and multi-drop ejection method, Addit. Manuf. 25, 522 (2019).

    Google Scholar 

  26. Y. Zhang, B. Zhu, Y. Liu, and G. Wittstock, Hydrodynamic dispensing and electrical manipulation of attolitre droplets, Nat. Commun. 7, 12424 (2016).

    Article  Google Scholar 

  27. D. Li, H. Li, G. Yang, Y. Cao, B. Huang, X. Wu, Q. Sun, C. Ma, Y. Zhou, Y. Liu, and Y. Zhang, Mechanisms of inkjet printing in a liquid environment, J. Fluid Mech. 948, A40 (2022).

    Article  Google Scholar 

  28. H. Gudapati, M. Dey, and I. Ozbolat, A comprehensive review on droplet-based bioprinting: Past, present and future, Biomaterials 102, 20 (2016).

    Article  Google Scholar 

  29. W. Zhang, N. Li, D. Koga, Y. Zhang, H. Zeng, H. Nakajima, J. M. Lin, and K. Uchiyama, Inkjet printing based droplet generation for integrated online digital polymerase chain reaction, Anal. Chem. 90, 5329 (2018).

    Article  Google Scholar 

  30. D. B. Bogy, and F. E. Talke, Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices, IBM J. Res. Dev. 28, 314 (1984).

    Article  Google Scholar 

  31. S. Wang, Y. Zhong, and H. Fang, Deformation characteristics of a single droplet driven by a piezoelectric nozzle of the drop-on-demand inkjet system, J. Fluid Mech. 869, 634 (2019), arXiv: 1811.10930.

    Article  Google Scholar 

  32. D. Li, H. Li, G. Yang, J. Wang, B. Huang, X. Wu, Q. Sun, C. Ma, Y. Liu, and Y. Zhang, Subharmonic resonance and antiresonance characteristics for high-frequency confined interface vibration inkjet printing, Phys. Fluids 34, 032104 (2022).

    Article  Google Scholar 

  33. Y. Zhang, D. Li, Y. Liu, and G. Wittstock, Inkjet printing in liquid environments, Small 14, 1801212 (2018).

    Article  Google Scholar 

  34. Y. Chen, J. Yang, J. Wu, Z. Li, S. Liu, H. Zhong, R. Zhou, A. Luo, H. P. Ho, S. He, X. Xing, and L. Shui, Generation and manipulation of oil-in-water micro-droplets by confined thermocapillary microvortices, Opt. Lett. 45, 1998 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science (Natural science) Research Project of Higher Education of Jiangsu Province (Grant No. 23KJB460019), the National Natural Science Foundation of China (Grant Nos. 12302355 and 52075548), the Taishan Scholar Program of Shandong Province (Grant No. tsqn201909068), the Excellent Young Scientists Fund of Shandong Province (Grant No. 2022HWYQ-071), and the Fundamental Research Funds for the Central Universities (Grant No. 20CX06074A)

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Dege Li designed the research, conducted the theoretical analyses, and wrote the first draft of the manuscript. Li Sun and Xinlei Wu revised and edited the final version. Zihao Li and Xinlei Wu conducted the experimental section. Guofang Hu, Chi Ma, and Qiang Sun processed the experiment data, and helped organize the manuscript. Yonghong Liu and Yanzhen Zhang provided the supervision, and performed the funding acquisition.

Corresponding authors

Correspondence to Dege Li  (李德格) or Yanzhen Zhang  (张彦振).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Sun, L., Li, Z. et al. Suppression of secondary droplet for high-definition drop-on-demand inkjet by actively regulating the channel acoustic waves. Acta Mech. Sin. 40, 323340 (2024). https://doi.org/10.1007/s10409-023-23340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23340-x

Navigation