Skip to main content
Log in

The effects of non-inverse-square-root stress singularity on some crack propagation criteria in hydraulic fracturing

非倒平方根应力奇异性对水力压裂某些裂纹扩展准则的影响

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Numerous crack propagation criteria have been employed in numerical investigations of hydraulic fracturing. Some criteria rely on linear elastic fracture mechanics, which assume the presence of an inverse-square-root stress singularity and an elliptical crack profile. However, it has been observed that hydraulic fracturing exhibits a weaker stress singularity, which is governed by a dimensionless parameter known as apparent fracture toughness. This parameter represents the energy required to fracture the solid compared to the energy needed to overcome fluid friction. Abnormal stress singularity was found for the viscosity dominated regime where the apparent fracture toughness approaches zero from the positive side. Variations in results can occur when different criteria are employed, primarily due to the breakdown of the inverse-square-root stress singularity. In this paper, a mathematical model utilizing a straight slit crack was employed to investigate these discrepancies. Four commonly used criteria were implemented in the same mathematical model, and high-precision methods based on modified Chebyshev polynomials and implicit algorithms were employed for calculations. The transient crack dimensions and wellbore pressure were found to diverge for these criteria. Notably, the CTOD, CDM, and FPZ criteria were found to be challenging to apply in the viscosity-dominated regime where the apparent fracture toughness was less than 1.0. The underlying mechanisms were discussed based on crack tip asymptotics and crack opening behavior. This study provides valuable insights for selecting appropriate crack propagation criteria in hydraulic fracturing.

摘要

水力压裂的数值研究可采用不同的裂纹扩展准则, 其中一些准则依赖于线弹性断裂力学的假设, 即存在倒平方根应力奇异性和 椭圆裂纹轮廓. 然而, 水力压裂的裂纹尖端可能表现出更弱的应力奇异性, 这种现象由称为表观断裂韧性的无量纲参数控制, 该参数表 示使固体破裂所需的能量与克服流体摩擦所需的能量的比. 在流体黏度占主导的情况下, 表观断裂韧性从正数一侧趋近于零, 应力奇 异性阶次降低. 当采用一些裂纹扩展准则计算时, 结果可能会发生变化, 主要是由于倒平方根应力奇异性发生改变, 本文采用平直裂纹 的数学模型来研究这种现象. 在相同的数学模型中分别采用4种常用裂纹扩展准则, 使用基于修正切比雪夫多项式和隐式时间积分的 高精度方法进行计算. 发现瞬态裂缝尺寸和井筒压力在使用不同裂纹扩展准则时存在差异. 值得注意的是, 当表观断裂韧性小于1.0时, 裂纹尖端张开位移准则、连续介质损伤模型和断裂过程区准则在流体黏度占主导的情况下的计算模型很难收敛, 本文基于裂纹尖端 渐近性质讨论了其中隐含的机制. 本文研究为水力压裂中裂缝扩展准则的选择提供了理论基础.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. N. R. Warpinski, Z. A. Moschovidis, C. D. Parker, and I. S. Abou-Sayed, Comparison study of hydraulic fracturing models—test case: GRI staged field experiment No. 3, SPE Production Facilities 9, 7 (1994).

    Article  Google Scholar 

  2. A. Yousefzadeh, Q. Li, C. Virues, and R. Aguilera, in Comparison of PKN, KGD, pseudo3D, and diffusivity models for hydraulic fracturing of the Horn river basin shale gas formations using microseismic data: Proceedings of SPE Unconventional Resources Conference (Society of Petroleum Engineers, Calgary, 2017). p. 185057.

    Google Scholar 

  3. B. Yadali Jamaloei, A critical review of common models in hydraulic-fracturing simulation: A practical guide for practitioners, Theor. Appl. Fract. Mech. 113, 102937 (2021).

    Article  Google Scholar 

  4. B. Chen, B. R. Barboza, Y. Sun, J. Bai, H. R. Thomas, M. Dutko, M. Cottrell, and C. Li, A review of hydraulic fracturing simulation, Arch. Computat. Methods Eng. 29, 1 (2022).

    Article  MathSciNet  Google Scholar 

  5. B. Lecampion, and J. Desroches, Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore, J. Mech. Phys. Solids 82, 235 (2015).

    Article  MathSciNet  Google Scholar 

  6. Q. Zeng, Z. Liu, T. Wang, Y. Gao, and Z. Zhuang, Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore, Comput. Mech. 61, 137 (2018).

    Article  MathSciNet  Google Scholar 

  7. H. Zia, and B. Lecampion, PyFrac: A planar 3D hydraulic fracture simulator, Comput. Phys. Commun. 255, 107368 (2020).

    Article  MathSciNet  Google Scholar 

  8. F. Sun, W. Shen, and Y. P. Zhao, Deflected trajectory of a single fluid-driven crack under anisotropic in-situ stress, Extreme Mech. Lett. 29, 100483 (2019).

    Article  Google Scholar 

  9. E. Gordeliy, and E. Detournay, Displacement discontinuity method for modeling axisymmetric cracks in an elastic half-space, Int. J. Solids Struct. 48, 2614 (2011).

    Article  Google Scholar 

  10. P. Valkó, and M. J. Economides, A continuum-damage-mechanics model of hydraulic fracturing (includes associated papers 26282, 26303, 27734 and 27738), J. Petroleum Technol. 45, 198 (1993).

    Article  Google Scholar 

  11. P. Valkó, and M. J. Economides, Propagation of hydraulically induced fractures—a continuum damage mechanics approach, Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 31, 221 (1994).

    Article  Google Scholar 

  12. A. Shojaei, A. Dahi Taleghani, and G. Li, A continuum damage failure model for hydraulic fracturing of porous rocks, Int. J. Plast. 59, 199 (2014).

    Article  Google Scholar 

  13. H. Zhu, X. Zhao, J. Guo, X. Jin, F. An, Y. Wang, and X. Lai, Coupled flow-stress-damage simulation of deviated-wellbore fracturing in hard-rock, J. Nat. Gas Sci. Eng. 26, 711 (2015).

    Article  Google Scholar 

  14. L. Xia, J. Yvonnet, and S. Ghabezloo, Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media, Eng. Fract. Mech. 186, 158 (2017).

    Article  Google Scholar 

  15. Q. Lei, N. Gholizadeh Doonechaly, and C. F. Tsang, Modelling fluid injection-induced fracture activation, damage growth, seismicity occurrence and connectivity change in naturally fractured rocks, Int. J. Rock Mech. Min. Sci. 138, 104598 (2021).

    Article  Google Scholar 

  16. M. Qin, D. Yang, and W. Chen, Three-dimensional hydraulic fracturing modeling based on peridynamics, Eng. Anal. Bound. Elem. 141, 153 (2022).

    Article  MathSciNet  Google Scholar 

  17. E. Sarris, and P. Papanastasiou, The influence of the cohesive process zone in hydraulic fracturing modelling, Int. J. Fract. 167, 33 (2011).

    Article  Google Scholar 

  18. Y. Yao, Linear elastic and cohesive fracture analysis to model hydraulic fracture in brittle and ductile rocks, Rock Mech. Rock Eng. 45, 375 (2012).

    Article  Google Scholar 

  19. J. Guo, X. Zhao, H. Zhu, X. Zhang, and R. Pan, Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method, J. Nat. Gas Sci. Eng. 25, 180 (2015).

    Article  Google Scholar 

  20. Y. Nie, G. Zhang, Y. Xing, and S. Li, Influence of water-oil saturation on the fracture process zone: A modified dugdale-barenblatt model, Energies 11, 2882 (2018).

    Article  Google Scholar 

  21. R. Pan, G. Zhang, S. Li, X. Zheng, C. Xu, and Z. Fan, Influence of the fracture process zone on fracture propagation mode in layered rocks, J. Pet. Sci. Eng. 202, 108524 (2021).

    Article  Google Scholar 

  22. A. A. Griffith, VI. The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. Lond. A 221, 163 (1921).

    Article  Google Scholar 

  23. J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35, 379 (1968).

    Article  Google Scholar 

  24. G. P. Cherepanov, Crack propagation in continuous media, J. Appl. Math. Mech. 31, 503 (1967).

    Article  Google Scholar 

  25. M. Wrobel, G. Mishuris, and A. Piccolroaz, Energy release rate in hydraulic fracture: Can we neglect an impact of the hydraulically induced shear stress? Int. J. Eng. Sci. 111, 28 (2017).

    Article  MathSciNet  Google Scholar 

  26. P. Papanastasiou, and M. Thiercelin, Influence of preexisting discontinuities on the hydraulic fracturing propagation process, in: Hydraulic Fracturing and Geothermal Energy (Springer, Hague, 1983). pp. 413–430.

    Google Scholar 

  27. Q. Zeng, J. Yao, and J. Shao, Effect of plastic deformation on hydraulic fracturing with extended element method, Acta Geotech. 14, 2083 (2019).

    Article  Google Scholar 

  28. H. D. Bui, and R. Parnes, A reexamination of the pressure at the tip of a fluid-filled crack, Int. J. Eng. Sci. 20, 1215 (1982).

    Article  Google Scholar 

  29. J. Desroches, E. Detournay, B. Lenoach, P. Papanastasiou, J. R. A. Pearson, M. Thiercelin, and A. Cheng, The crack tip region in hydraulic fracturing, Proc. R. Soc. Lond. A 447, 39 (1994).

    Article  Google Scholar 

  30. E. Detournay, Mechanics of hydraulic fractures, Annu. Rev. Fluid Mech. 48, 311 (2016).

    Article  MathSciNet  Google Scholar 

  31. Z. Q. Wang, and E. Detournay, The tip region of a near-surface hydraulic fracture, J. Appl. Mech. 85, 041010 (2018).

    Article  Google Scholar 

  32. Z. Q. Wang, and E. Detournay, Force on a moving liquid blister, J. Fluid Mech. 918, A15 (2021).

    Article  MathSciNet  Google Scholar 

  33. W. Shen, and Y. P. Zhao, Quasi-static crack growth under symmetrical loads in hydraulic fracturing, J. Appl. Mech. 84, 081009 (2017).

    Article  Google Scholar 

  34. W. Shen, and Y. P. Zhao, Combined effect ofpressure and shear stress on penny-shaped fluid-driven cracks, J. Appl. Mech. 85, 031003 (2018).

    Article  Google Scholar 

  35. W. Shen, F. Yang, and Y. P. Zhao, Unstable crack growth in hydraulic fracturing: The combined effects of pressure and shear stress for a power-law fluid, Eng. Fract. Mech. 225, 106245 (2020).

    Article  Google Scholar 

  36. D. Garagash, and E. Detournay, The tip region of a fluid-driven fracture in an elastic medium, J. Appl. Mech. 67, 183 (2000).

    Article  Google Scholar 

  37. Lawn, B.R. Fracture of brittle solids. Cambridge solid state science series, 1993.

  38. G. R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech. 24, 361 (1957).

    Article  Google Scholar 

  39. M. L. Williams, On the stress distribution at the base of a stationary crack, J. Appl. Mech. 24, 109 (1956).

    Article  MathSciNet  Google Scholar 

  40. J. Mazars, A description ofmicro- and macroscale damage of concrete structures, Eng. Fract. Mech. 25, 729 (1986).

    Article  Google Scholar 

  41. A. A. Munjiza, The Combined Finite-Discrete Element Method (John Wiley & Sons, Chichester, 2004).

    Book  Google Scholar 

  42. C. Yan, X. Xie, Y. Ren, W. Ke, and G. Wang, A FDEM-based 2D coupled thermal-hydro-mechanical model for multiphysical simulation of rock fracturing, Int. J. Rock Mech. Min. Sci. 149, 104964 (2022).

    Article  Google Scholar 

  43. C. Yan, and H. Zheng, FDEM-flow3D: A 3D hydro-mechanical coupled model considering the pore seepage of rock matrix for simulating three-dimensional hydraulic fracturing, Comput. Geotech. 81, 212 (2017).

    Article  Google Scholar 

  44. H. Y. Zhu, X. H. Tang, Y. Li, X. Y. Wang, Y. Fan, N. Y. Zhou, and M. B. Dusseault, in A coupled flow-stress-damage explicit integration numerical model of wellbore fracturing based on finite-discrete element method in natural fractured shale gas reservoir: Proceedings of 54th U.S. Rock Mechanics/Geomechanics Symposium, 2020.

  45. X. Zhu, C. Feng, P. Cheng, X. Wang, and S. Li, A novel three-dimensional hydraulic fracturing model based on continuum-discontinuum element method, Comput. Methods Appl. Mech. Eng. 383, 113887 (2021).

    Article  MathSciNet  Google Scholar 

  46. G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech. 7, 55 (1962).

    Article  MathSciNet  Google Scholar 

  47. X. Hu, Q. Li, Z. Wu, and S. Yang, Modelling fracture process zone width and length for quasi-brittle fracture of rock, concrete and ceramics, Eng. Fract. Mech. 259, 108158 (2022).

    Article  Google Scholar 

  48. F. C. Wang, and Y. P. Zhao, Slip boundary conditions based on molecular kinetic theory: The critical shear stress and the energy dissipation at the liquid-solid interface, Soft Matter 7, 8628 (2011).

    Article  Google Scholar 

  49. X. Wang, Y. Wang, H. Tian, and N. Jiang, Effects of the slip wall on the drag and coherent structures of turbulent boundary layer, Acta Mech. Sin. 37, 1278 (2021).

    Article  MathSciNet  Google Scholar 

  50. D. I. Garagash, Propagation of a plane-strain hydraulic fracture with a fluid lag: Early-time solution, Int. J. Solids Struct. 43, 5811 (2006).

    Article  Google Scholar 

  51. Y. Shen, A variational inequality formulation to incorporate the fluid lag in fluid-driven fracture propagation, Comput. Methods Appl. Mech. Eng. 272, 17 (2014).

    Article  MathSciNet  Google Scholar 

  52. Y. Song, Y. Lu, and H. Hu, Modified multiplying-factor integration method for solving exponential function dual integrals in crack problems, Acta Mech. Sin. 38, 421287 (2022).

    Article  MathSciNet  Google Scholar 

  53. H. Li, W. Lei, R. Chen, and Q. Hu, A study on boundary integral equations for dynamic elastoplastic analysis for the plane problem by TD-BEM, Acta Mech. Sin. 37, 662 (2021).

    Article  MathSciNet  Google Scholar 

  54. W. Shen, Toughness heterogeneity induced shielding effect of a bi-wing hydraulic crack in plane strain state, Eng. Fract. Mech. 242, 107475 (2021).

    Article  Google Scholar 

  55. D. Peck, M. Wrobel, M. Perkowska, and G. Mishuris, Fluid velocity based simulation of hydraulic fracture: A penny shaped model—part I: the numerical algorithm, Meccanica 53, 3615 (2018).

    Article  MathSciNet  Google Scholar 

  56. M. Wrobel, A. Piccolroaz, P. Papanastasiou, and G. Mishuris, Redirection of a crack driven by viscous fluid taking into account plastic effects in the process zone, Geomech. Energy Environ. 26, 100147 (2021).

    Article  Google Scholar 

  57. Q. Wang, H. Yu, W. L. Xu, C. S. Lyu, J. N. Zhang, M. Micheal, and H. A. Wu, Spatial and temporal constraints of the cohesive modeling: A unified criterion for fluid-driven fracture, Numer. Meth. Eng. 124, 2756 (2023).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11902213).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wenhao Shen designed the research, built the mathematical model and the numerical calculation procedure, and wrote the first draft of the manuscript. Xuan Wu conducted the numerical calculations and processed the data. Xianfu Huang and Xuan Wu helped organize the manuscript, and revised and edited the final version.

Corresponding author

Correspondence to Wenhao Shen  (沈文豪).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Wu, X. & Huang, X. The effects of non-inverse-square-root stress singularity on some crack propagation criteria in hydraulic fracturing. Acta Mech. Sin. 40, 423246 (2024). https://doi.org/10.1007/s10409-023-23246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23246-x

Navigation