Skip to main content
Log in

Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton’s iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhang X, Bunger AP, Jeffrey RG (2014) Mechanics of two interacting magma-driven fractures: a numerical study. J Geophys Res Solid Earth 119:8047–8063. doi:10.1002/2014jb011273

    Article  Google Scholar 

  2. Lucantonio A, Noselli G, Trepat X, DeSimone A, Arroyo M (2015) Hydraulic fracture and toughening of a brittle layer bonded to a hydrogel. Phys Rev Lett 115:188105. doi:10.1103/PhysRevLett.115.188105

    Article  Google Scholar 

  3. Khristianovic SA, Zheltov YP (1955) Formation of vertical fractures by means of highly viscous liquid. Paper presented at the proceedings of 4th world petroleum congress, Rome, Italy

  4. Geertsma J, De Klerk F (1969) A rapid method of predicting width and extent of hydraulically induced fractures. J Pet Technol 21:1571–1581. doi:10.2118/2458-PA

    Article  Google Scholar 

  5. Perkins TK, Kern LR (1961) Widths of hydraulic fractures. J Pet Technol 13:937–949. doi:10.2118/89-PA

    Article  Google Scholar 

  6. Nordgren RP (1972) Propagation of a vertical hydraulic fracture. Soc Pet Eng J 12:306–314. doi:10.2118/3009-PA

    Article  Google Scholar 

  7. Spence DA, Sharp P (1985) Self-similar solutions for elastohydrodynamic cavity flow. In: Proceedings of the royal society of london series A, mathematical and physical sciences, vol 400, pp 289–313

  8. Adachi J (2001) Fluid-driven fracture in permeable rock. Dissertation, University of Minnesota

  9. Savitski AA, Detournay E (2002) Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: asymptotic solutions. Int J Solids Struct 39:6311–6337. doi:10.1016/S0020-7683(02)00492-4

    Article  MATH  Google Scholar 

  10. Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4:35–45. doi:10.1061/(ASCE)1532-3641(2004)4:1(35)

    Article  Google Scholar 

  11. Garagash DI (2006) Propagation of a plane-strain hydraulic fracture with a fluid lag: early-time solution. Int J Solids Struct 43:5811–5835. doi:10.1016/j.ijsolstr.2005.10.009

    Article  MATH  Google Scholar 

  12. Bažant ZP, Ohtsubo H, Aoh K (1979) Stability and post-critical growth of a system of cooling or shrinkage cracks. Int J Fracture 15:443–456. doi:10.1007/bf00023331

    Article  Google Scholar 

  13. Nemat-Nasser S, Keer LM, Parihar KS (1978) Unstable growth of thermally induced interacting cracks in brittle solids. Int J Solids Struct 14:409–430. doi:10.1016/0020-7683(78)90007-0

    Article  MATH  Google Scholar 

  14. Nemat-Nasser S, Sumi Y, Keer LM (1980) Unstable growth of tension cracks in brittle solids: stable and unstable bifurcations, snap-through, and imperfection sensitivity. Int J Solids Struct 16:1017–1035. doi:10.1016/0020-7683(80)90102-x

    Article  MATH  Google Scholar 

  15. Bažant ZP, Tabbara MR (1992) Bifurcation and stability of structures with interacting propagating cracks. Int J Fracture 53:273–289. doi:10.1007/bf00017341

    Google Scholar 

  16. Olson JE, Taleghani AD (2009) Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures. Paper presented at the SPE hydraulic fracturing technology conference society of petroleum engineers, The Woodlands, Texas

  17. Taleghani AD (2011) Modeling simultaneous growth of multi-branch hydraulic fractures. Paper presented at the 45th US rock mechanics/geomechanics symposium American rock mechanics association, San Francisco, California

  18. Mack MG, Elbel JL, Piggott AR (1992) Numerical representation of multilayer hydraulic fracturing. Paper presented at the 33th US symposium on rock mechanics (USRMS) American rock mechanics association, Santa Fe, New Mexico

  19. Bunger AP (2013) Analysis of the power input needed to propagate multiple hydraulic fractures. Int J Solids Struct 50:1538–1549. doi:10.1016/j.ijsolstr.2013.01.004

    Article  Google Scholar 

  20. Lecampion B, Desroches J (2015) Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore. J Mech Phys Solids 82:235–258. doi:10.1016/j.jmps.2015.05.010

    Article  MathSciNet  Google Scholar 

  21. Wu K, Olson JE (2015) Mechanisms of simultaneous hydraulic-fracture propagation from multiple perforation clusters in horizontal wells. SPE J 21:1–9. doi:10.2118/178925-PA

    Google Scholar 

  22. Gordeliy E, Peirce A (2013) Coupling schemes for modeling hydraulic fracture propagation using the XFEM. Comput Methods Appl Mech Eng 253:305–322. doi:10.1016/j.cma.2012.08.017

    Article  MathSciNet  MATH  Google Scholar 

  23. Gordeliy E, Peirce A (2013) Implicit level set schemes for modeling hydraulic fractures using the XFEM. Comput Methods Appl Mech Eng 266:125–143. doi:10.1016/j.cma.2013.07.016

    Article  MathSciNet  MATH  Google Scholar 

  24. Khoei AR, Hirmand M, Vahab M, Bazargan M (2015) An enriched FEM technique for modeling hydraulically driven cohesive fracture propagation in impermeable media with frictional natural faults: numerical and experimental investigations. Int J Numer Methods Eng 104:439–468. doi:10.1002/nme.4944

    Article  MathSciNet  MATH  Google Scholar 

  25. Gupta P, Duarte CA (2016) Coupled formulation and algorithms for the simulation of non-planar three-dimensional hydraulic fractures using the generalized finite element method. Int J Numer Anal Methods Geomech 40:1402–1437. doi:10.1002/nag.2485

    Article  Google Scholar 

  26. Faivre M, Paul B, Golfier F, Giot R, Massin P, Colombo D (2016) 2D coupled HM-XFEM modeling with cohesive zone model and applications to fluid-driven fracture network. Eng Fract Mech 159:115–143. doi:10.1016/j.engfracmech.2016.03.029

    Article  Google Scholar 

  27. Mohammadnejad T, Khoei AR (2013) An extended finite element method for fluid flow in partially saturated porous media with weak discontinuities; the convergence analysis of local enrichment strategies. Comput Mech 51:327–345. doi:10.1007/s00466-012-0732-8

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu K (2014) Numerical modeling of complex hydraulic fracture development in unconventional reservoirs. Dissertation, The University of Texas at Austin

  29. Gordeliy E, Detournay E (2011) A fixed grid algorithm for simulating the propagation of a shallow hydraulic fracture with a fluid lag. Int J Numer Anal Methods Geomech 35:602–629. doi:10.1002/nag.913

    Article  MATH  Google Scholar 

  30. Adachi J, Siebrits E, Peirce A, Desroches J (2007) Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci 44:739–757. doi:10.1016/j.ijrmms.2006.11.006

    Article  Google Scholar 

  31. Peirce A, Detournay E (2008) An implicit level set method for modeling hydraulically driven fractures. Comput Methods Appl Mech Eng 197:2858–2885. doi:10.1016/j.cma.2008.01.013

    Article  MATH  Google Scholar 

  32. Xu DD, Liu ZL, Liu XM, Zeng QL, Zhuang Z (2014) Modeling of dynamic crack branching by enhanced extended finite element method. Comput Mech 54:489–502. doi:10.1007/s00466-014-1001-9

    Article  MathSciNet  MATH  Google Scholar 

  33. Fox RW, McDonald AT, Pritchard PJ (2010) Introduction to fluid mechanics. Wiley, New York

    MATH  Google Scholar 

  34. Moody LF (1944) Friction factors for pipe flow. Trans ASME 66:671–684

    Google Scholar 

  35. Colebrook CF (1939) Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J Inst Civ Eng 11:133–156. doi:10.1680/ijoti.1939.13150

    Article  Google Scholar 

  36. Swamee PK, Jain AK (1976) Explicit equations for pipe-flow problems. J Hydraul Div Asce 102:657–664

    Google Scholar 

  37. Haaland SE (1983) Simple and explicit formulas for the friction factor in turbulent pipe flow. J Fluids Eng 105:89–90. doi:10.1115/1.3240948

    Article  Google Scholar 

  38. Crump JB, Conway MW (1988) Effects of perforation-entry friction on bottomhole treating analysis. J Pet Technol 40:1041–1048. doi:10.2118/15474-PA

    Article  Google Scholar 

  39. Cramer DD (1987) The application of limited-entry techniques in massive hydraulic fracturing treatments. Paper presented at the SPE production operations symposium, Oklahoma City, Oklahoma

  40. McDaniel BW, Willett RM, Underwood PJ (1999) Limited-entry frac applications on long intervals of highly deviated or horizontal wells. Paper presented at the SPE annual technical conference and exhibition, Houston, Texa

  41. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.3.co;2-a

    Article  MATH  Google Scholar 

  42. Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84:253–304. doi:10.1002/nme.2914

    MathSciNet  MATH  Google Scholar 

  43. Zeng QL, Liu ZL, Xu DD, Wang H, Zhuang Z (2016) Modeling arbitrary crack propagation in coupled shell/solid structures with X-FEM. Int J Numer Methods Eng 106:1018–1040. doi:10.1002/nme.5157

    Article  MathSciNet  MATH  Google Scholar 

  44. Gordeliy E, Peirce A (2015) Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems. Comput Methods Appl Mech Eng 283:474–502. doi:10.1016/j.cma.2014.09.004

    Article  MathSciNet  Google Scholar 

  45. Zhuang Z, Liu Z, Cheng B, Liao J (2014) Extended finite element method. Elsevier, Tsinghua University Press, Oxford

    Google Scholar 

  46. Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng 190:6825–6846. doi:10.1016/S0045-7825(01)00260-2

    Article  MathSciNet  MATH  Google Scholar 

  47. Gosz M, Moran B (2002) An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions. Eng Fract Mech 69:299–319. doi:10.1016/s0013-7944(01)00080-7

    Article  Google Scholar 

  48. Walters MC, Paulino GH, Dodds RH (2005) Interaction integral procedures for 3-D curved cracks including surface tractions. Eng Fract Mech 72:1635–1663. doi:10.1016/j.engfracmech.2005.01.002

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 11532008 and 11372157), the Special Research Grant for Doctor Discipline by Ministry of Education, China (Grant No. 20120002110075), the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201326). Tsinghua University Initiative Scientific Research Program is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanli Liu or Zhuo Zhuang.

Appendix: Fluid partitioning into two HFs

Appendix: Fluid partitioning into two HFs

Assume two stationary fractures in linear-elastic solid medium are interconnected by a wellbore with zero friction. The geometry is symmetric with respect to the wellbore. The half lengths are denoted as \(l_1\) and \(l_2\). Pump inviscid fluid into the two fractures from the wellbore with the given flux \(Q_0\). The pressure in the wellbore is uniform with the value \(p_w\) and the pressure in each fracture is also uniform with the values of \(p_1\) and \(p_2\), respectively. The inlet fluxes into the two fractures are denoted as \(2q_1\) and \(2q_2\). Plane strain assumption is adopted and the heights of the fractures are h. The mass conservation can be given by

$$\begin{aligned} 2hq_1 +2hq_2 =Q_0 \end{aligned}$$
(78)

At the inlets, the entry loss characterized by a coefficient \(\varphi _p\) is considered and then

$$\begin{aligned} p_w -p_1= & {} \varphi _p \cdot \left( {2hq_1 } \right) ^{2} \end{aligned}$$
(79)
$$\begin{aligned} p_w -p_2= & {} \varphi _p \cdot \left( {2hq_2 } \right) ^{2} \end{aligned}$$
(80)

Assume there’s no stress interaction effect between the fractures and then from the theoretical solution of a fracture loaded by uniform pressure, the whole volume of the fluid in the fracture is

$$\begin{aligned} V=\frac{2\left( {\kappa +1} \right) \pi hl^{2}}{8\mu }p \end{aligned}$$
(81)

where \(\kappa =3-4\nu \) and \(\mu =E/{\left[ {2(1+\nu )} \right] }\). Consider the process before the propagation of the fractures and the inlet flow rate for each fracture can be given as

$$\begin{aligned} q_i =\frac{\dot{V}_i }{2h}=c_i \dot{p}_i ,\quad i=1,2 \end{aligned}$$
(82)

where \(c_i =\left( {\kappa +1} \right) \pi l_i^2 /\left( {8\mu } \right) \).

The initial conditions are given as

$$\begin{aligned} p_1 (0)=p_2 (0)=p_0 \end{aligned}$$
(83)

Combining Eqs. (78), (79), (80), (82) and (83), we can solve the equations and get the fluxes as

$$\begin{aligned} q_1= & {} \left[ {-\frac{c_1 -c_2 }{2\left( {c_1 +c_2 } \right) }e^{-\eta t}+\frac{c_1 }{c_1 +c_2 }} \right] \cdot \frac{Q_0 }{2h} \end{aligned}$$
(84)
$$\begin{aligned} q_2= & {} \left[ {\frac{c_1 -c_2 }{2\left( {c_1 +c_2 } \right) }e^{-\eta t}+\frac{c_2 }{c_1 +c_2 }} \right] \cdot \frac{Q_0 }{2h} \end{aligned}$$
(85)

where \(\eta =\left( {c_1 +c_2 } \right) /\left( {4c_1 c_2 \varphi _p hQ_0 } \right) \). When \(t=0\), \(q_1 =q_2 =Q_0 /\left( {4h} \right) \) and when \(t\rightarrow \infty \), \(q_1 =c_1 /\left( {c_1 +c_2 } \right) \cdot Q_0 /\left( {2h} \right) \), \(q_2 =c_2 /\left( {c_1 +c_2 } \right) \cdot Q_0 /\left( {2h} \right) \). So we can define the critical time \(t_c =1/\eta =4c_1 c_2 \varphi _p hQ_0 /\left( {c_1 +c_2 } \right) \) to characterize the evolution of fluid partitioning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Liu, Z., Wang, T. et al. Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore. Comput Mech 61, 137–155 (2018). https://doi.org/10.1007/s00466-017-1412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1412-5

Keywords

Navigation