Skip to main content
Log in

Electrohydrodynamic instabilities of viscous jets under alternating electric fields

交变电场作用下黏性射流的稳定性分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The instability and breakup of liquid jets under static or alternating electric fields are involved in numerous industrial applications. Unlike under electrostatic fields, far fewer investigations have been conducted to analyze the instability of liquid jets in alternating electric fields. Thus, the electric and viscous correction of viscous potential flow (EVCVPF) is applied here to describe the linear instability of leaky-dielectric liquid jets subjected to alternating electric fields. The effects of alternating electric fields, fluid electric properties, and other parameters are investigated. The capillary instability response is like that of the jets under electrostatic fields. Under a sufficiently strong alternating electric field, the resonance instability dominates surface disturbances, leading to the resonant atomization. Viscous damping makes the resonance weaker–even vanishing with the increasing frequency. Furthermore, the conductive charge–largely dependent on fluid conductivities–has the opposite effect of the surface charge. Thus, when the charge relaxation time approaches the imposed period, the parametric resonance is strongly inhibited. In addition, when aerodynamic effects are sufficiently strong, the resonance is covered.

摘要

液体射流在静电或交变电场作用下的失稳和破裂问题在许多工业应用中都有涉及. 与静电场作用下射流稳定性研究相比, 交变 电场下射流的稳定性分析研究要少得多. 因此, 本文采用电场力和黏性力共同修正压强的黏势流模型来描述交变电场作用下漏电介质 液体射流的线性不稳定性, 主要研究了交变电场、流体电学性质等参数的影响. 交变电场作用下射流的毛细不稳定与静电场作用下射 流不稳定特性是相似的. 在足够强交变电场作用下, 参数不稳定主导表面扰动的发展, 从而进入共振电雾化模式. 参数不稳定会被黏性 耗散抑制, 甚至随着频率的增加会完全消失. 同时, 导电电荷(主要取决于流体导电性)的作用与表面电荷是相反的, 因此当电荷弛豫时 间接近交变电场周期时, 参数不稳定会受到强烈的抑制作用. 此外, 当气动作用足够强时, 参数不稳定会被覆盖

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. M. Montanero, and A. M. Gaøán-Calvo, Dripping, jetting and tip streaming, Rep. Prog. Phys. 83, 097001 (2020).

    Article  MathSciNet  Google Scholar 

  2. A. B. Aqeel, M. Mohasan, P. Lv, Y. Yang, and H. Duan, Effects of the actuation waveform on the drop size reduction in drop-on-demand inkjet printing, Acta Mech. Sin. 36, 983 (2020).

    Article  Google Scholar 

  3. L. Zhou, Studies on theory and modeling of droplet and spray combustion in China: a review, Acta Mech. Sin. 37, 1031 (2021).

    Article  Google Scholar 

  4. R. Lord, On the equilibrium of liquid conducting masses charged with electricity, Philos. Mag. 14, 184 (1882).

    Article  Google Scholar 

  5. M. A. Sirwah, Linear instability of the electrified free interface between two cylindrical shells of viscoelastic fluids through porous media, Acta Mech. Sin. 28, 1572 (2012).

    Article  MathSciNet  Google Scholar 

  6. F. Li, S. Y. Ke, X. Y. Yin, and X. Z. Yin, Effect of finite conductivity on the nonlinear behaviour of an electrically charged viscoelastic liquid jet, J. Fluid Mech. 874, 5 (2019).

    Article  MathSciNet  Google Scholar 

  7. L. Xie, B. Jia, X. Cui, L. Yang, and Q. Fu, Linear analysis and energy budget of viscous liquid jets in both axial and radial electric fields, Appl. Math. Model. 83, 400 (2020).

    Article  MathSciNet  Google Scholar 

  8. F. Li, S. Ke, S. Xu, X. Yin, and X. Yin, Radial deformation and disintegration of an electrified liquid jet, Phys. Fluids 32, 021701 (2020).

    Article  Google Scholar 

  9. M. Rubio, E. J. Vega, M. A. Herrada, J. M. Montanero, and F. J. Galindo-Rosales, Breakup of an electrified viscoelastic liquid bridge, Phys. Rev. E 102, 33103 (2020).

    Article  Google Scholar 

  10. M. Rubio, A. Ponce-Torres, M. A. Herrada, A. M. Ganøá-Calvo, and J. M. Montanero, Effect of an axial electric field on the breakup of a leaky-dielectric liquid filament, Phys. Fluids 33, 092114 (2021).

    Article  Google Scholar 

  11. S. Ke, P. Jin, S. Xu, X. Yin, X. Yin, and F. Li, Transient radial spray from electrified viscous jets, Phys. Fluids 33, 121704 (2021).

    Article  Google Scholar 

  12. Q. Nie, F. Li, Q. Ma, H. Fang, and Z. Yin, Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets, J. Fluid Mech. 925, A4 (2021).

    Article  MathSciNet  Google Scholar 

  13. Q. Wang, Z. Wang, Y. Jiang, and S. Yang, Experimental study of electro-spraying modes of deionized water in atmospheric environment, Exp. Comput. Multiph. Flow 3, 38 (2021).

    Article  Google Scholar 

  14. Z. Wang, Q. Kong, B. Li, J. Tian, K. Yu, and J. Wang, Electrohy-drodynamic instability and disintegration of low viscous liquid jet, Phys. Fluids 34, 123301 (2022).

    Article  Google Scholar 

  15. S. Yang, Z. Wang, Q. Kong, and B. Li, Varicose-whipping instabilities transition of an electrified micro-jet in electrohydrodynamic cone-jet regime, Int. J. Multiphase Flow 146, 103851 (2022).

    Article  Google Scholar 

  16. A. M. A. Mohamed, and N. K. Nayyar, Electrohydrodynamic stability of a liquid jet, J. Phys. A-Gen. Phys. 3, 296 (1970).

    Article  Google Scholar 

  17. H. González, A. Ramos, and A. Castellanos, Parametric instability of dielectric, slightly viscous liquid jets under ac electric fields, Phys. Fluids 9, 1830 (1997).

    Article  Google Scholar 

  18. H. González, A. Ramos, and A. Castellanos, Parametric instability of conducting, slightly viscous liquid jets under periodic electric fields, J. Electrostat. 47, 27 (1999).

    Article  Google Scholar 

  19. H. González, F. J. García, and A. Castellanos, Stability analysis of conducting jets under ac radial electric fields for arbitrary viscosity, Phys. Fluids 15, 395 (2003).

    Article  MathSciNet  Google Scholar 

  20. S. V. Polyanskikh, and E. A. Demekhin, Stability of non-axisymmetric electrolyte jet in high-frequency AC electric field, Microgravity Sci. Technol. 21, 325 (2009).

    Article  Google Scholar 

  21. E. A. Demekhin, and S. V. Polyanskikh, Instability of Slender Liquid Jet in AC Electric Field of Arbitrary Frequency, Microgravity Sci. Technol. 22, 369 (2010).

    Article  Google Scholar 

  22. E. A. Demekhin, and S. V. Polyanskikh, Stability of a viscous liquid microjet in DC and AC electric fields, Fluid Dyn. 45, 719 (2010).

    Article  MathSciNet  Google Scholar 

  23. D. T. Conroy, O. K. Matar, R. V. Craster, and D. T. Papageorgiou, Breakup of an electrified, perfectly conducting, viscous thread in an AC field, Phys. Rev. E 83, 66314 (2011).

    Article  Google Scholar 

  24. L. Xie, B. Jia, X. Cui, L. Yang, and Q. Fu, Linear stability analysis of a non-Newtonian liquid jet under AC electric fields, Aerosp. Sci. Tech. 106, 106121 (2020).

    Article  Google Scholar 

  25. A. Bandopadhyay, and S. Hardt, Stability of horizontal viscous fluid layers in a vertical arbitrary time periodic electric field, Phys. Fluids 29, 124101 (2017).

    Article  Google Scholar 

  26. D. S. Pillai, and R. Narayanan, Electrostatic forcing of thin leaky dielectric films under periodic and steady fields, J. Fluid Mech. 890, A20 (2020).

    Article  MathSciNet  Google Scholar 

  27. J. R. Melcher, and G. I. Taylor, Electrohydrodynamics: A review of the role of interfacial shear stresses, Annu. Rev. Fluid Mech. 1, 111 (1969).

    Article  Google Scholar 

  28. D. A. Saville, Electrohydrodynamics: The Taylor-Melcher leaky dielectric model, Annu. Rev. Fluid Mech. 29, 27 (1997).

    Article  MathSciNet  Google Scholar 

  29. K. Ward, S. Matsumoto, and R. Narayanan, The electrostatically forced Faraday instability: Theory and experiments, J. Fluid Mech. 862, 696 (2019).

    Article  MathSciNet  Google Scholar 

  30. D. T. Papageorgiou, Film flows in the presence of electric fields, Annu. Rev. Fluid Mech. 51, 155 (2019).

    Article  MathSciNet  Google Scholar 

  31. P. M. Vlahovska, Electrohydrodynamics of drops and vesicles, Annu. Rev. Fluid Mech. 51, 305 (2019).

    Article  MathSciNet  Google Scholar 

  32. S. Patankar, P. K. Farsoiya, and R. Dasgupta, Faraday waves on a cylindrical fluid filament–generalised equation and simulations, J. Fluid Mech. 857, 80 (2018).

    Article  MathSciNet  Google Scholar 

  33. L. Yang, B. Jia, Q. Fu, and Q. Yang, Stability of an air-assisted viscous liquid sheet in the presence of acoustic oscillations, Eur. J. Mech.-B Fluids 67, 366 (2018).

    Article  MathSciNet  Google Scholar 

  34. B. Jia, L. Xie, X. Cui, L. Yang, and Q. Fu, Linear stability of confined coaxial jets in the presence of gas velocity oscillations with heat and mass transfer, Phys. Fluids 31, 92101 (2019).

    Article  Google Scholar 

  35. X. Deng, H. Wang, X. Cui, L. Xie, and B. Jia, Temporal instability of confined three-dimensional liquid jet with heat and mass transfer under longitudinal acoustic oscillations, Phys. Fluids 34, 102107 (2022).

    Article  Google Scholar 

  36. D. D. Joseph, and T. Y. Liao, Potential flows of viscous and viscoelastic fluids, J. Fluid Mech. 265, 1 (1994).

    Article  MathSciNet  Google Scholar 

  37. D. D. Joseph, and J. Wang, The dissipation approximation and viscous potential flow, J. Fluid Mech. 505, 365 (2004).

    Article  MathSciNet  Google Scholar 

  38. L. Xie, H. Hu, F. Ren, X. Huang, P. Du, and J. Wen, Electric and viscous correction for viscous potential flow analysis of electrohy-drodynamic instability of an electrified leaky-dielectric jet, Phys. Fluids 33, 114109 (2021).

    Article  Google Scholar 

  39. C. A. Klausmeier, Floquet theory: A useful tool for understanding nonequilibrium dynamics, Theor. Ecol. 1, 153 (2008).

    Article  Google Scholar 

  40. P. Gambhire, and R. M. Thaokar, Role of conductivity in the electrohydrodynamic patterning of air-liquid interfaces, Phys. Rev. E 86, 36301 (2012).

    Article  Google Scholar 

  41. A. I. Zhakin, Electrohydrodynamics of charged surfaces, Physics-Uspekhi 56, 141 (2013).

    Article  Google Scholar 

  42. A. C. Ruo, K. H. Chen, M. H. Chang, and F. Chen, Instability of a charged non-Newtonian liquid jet, Phys. Rev. E 85, 16306 (2012).

    Article  Google Scholar 

  43. L. Xie, L. Yang, L. Qin, and Q. Fu, Temporal instability of charged viscoelastic liquid jets under an axial electric field, Eur. J. Mech.-B Fluids 66, 60 (2017).

    Article  MathSciNet  Google Scholar 

  44. J. M. López-Herrera, P. Riesco-Chueca, and A. M. Gaøán-Calvo, Linear stability analysis of axisymmetric perturbations in imperfectly conducting liquid jets, Phys. Fluids 17, 034106 (2005).

    Article  MathSciNet  Google Scholar 

  45. A. C. Ruo, M. H. Chang, and F. Chen, Electrohydrodynamic instability of a charged liquid jet in the presence of an axial magnetic field, Phys. Fluids 22, 44102 (2010).

    Article  Google Scholar 

  46. F. Li, X. Y. Yin, and X. Z. Yin, Axisymmetric and non-axisymmetric instability of an electrically charged viscoelastic liquid jet, J. Non-Newtonian Fluid Mech. 166, 1024 (2011).

    Article  Google Scholar 

  47. F. Li, A. M. Gaøán-Calvo, J. M. López-Herrera, X. Y. Yin, and X. Z. Yin, Absolute and convective instability of a charged viscoelastic liquid jet, J. Non-Newtonian Fluid Mech. 196, 58 (2013).

    Article  Google Scholar 

  48. T. Funada, and D. D. Joseph, Viscous potential flow analysis of capillary instability, Int. J. Multiphase Flow 28, 1459 (2002).

    Article  Google Scholar 

  49. K. Kumar, and L. S. Tuckerman, Parametric instability of the interface between two fluids, J. Fluid Mech. 279, 49 (1994).

    Article  MathSciNet  Google Scholar 

  50. F. Li, X. Y. Yin, and X. Z. Yin, Axisymmetric and non-axisymmetric instability of an electrified viscous coaxial jet, J. Fluid Mech. 632, 199 (2009).

    Article  Google Scholar 

  51. A. C. Ruo, M. H. Chang, and F. Chen, On the nonaxisymmetric instability of round liquid jets, Phys. Fluids 20, 62105 (2008).

    Article  Google Scholar 

  52. W. van Hoeve, S. Gekle, J. H. Snoeijer, M. Versluis, M. P. Brenner, and D. Lohse, Breakup of diminutive Rayleigh jets, Phys. Fluids 22, 122003 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Science Fund Project of the National Natural Science Foundation of China (Grant No. 12102358), the China Postdoctoral Science Foundation (Grant No. 2020M692617), the Fundamental Research Funds for the Central Universities (Grant No. 3102021HHZY030008), Natural Science Foundation of Chongqing of China (Grant No. cstc2021jcyj-msxmX0393), the Young Talent Fund of Association for Science and Technology in Shaanxi, China (Grant No. 20220512), and Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology (Grant No. LabASP-2022-05).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Luo Xie: Conceptualization, Methodology, Writing – original draft, Writing – review & editing. Xiao Cui: Data curation, Writing – review & editing. Bo-qi Jia: Software, Writing – review & editing. Qiang Li: Conceptualization, Writing – review & editing. Hai-bao Hu: Supervision, Methodology, Writing – review & editing.

Corresponding author

Correspondence to Haibao Hu  (胡海豹).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Cui, X., Jia, B. et al. Electrohydrodynamic instabilities of viscous jets under alternating electric fields. Acta Mech. Sin. 40, 223230 (2024). https://doi.org/10.1007/s10409-023-23230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23230-x

Navigation