Skip to main content
Log in

Flexible dynamics modeling and identification of thin-walled ammunition manipulator

薄壁弹药机械臂的柔性动力学建模与辨识研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Thin-walled structures are commonly used in the design of mechanical systems, and their flexible dynamic problems are the frontiers in engineering research. In this paper, a flexible multibody system modeling method based on the shell theory is firstly developed for the dynamics of ammunition manipulator with thin-walled structure. We obtained the kinematic equation of the Reissner-Mindlin shell structure based on the floating frame of reference formulation. The coupling of membrane deformation and bending deformation with rigid motion is integrated in the proposed model, which is the characteristic of Reissner-Mindlin shell different from solid structure. In order to overcome membrane-locking and shear-locking problems in shell element simulation, an edge-center based strain smoothing - discrete shear gap (ECSS-DSG) element is introduced. The ECSS-DSG method achieves better membrane and bending behavior, as well as effectively overcoming shear-locking. Accordingly, the ECSS-DSG shows better performance in the structural analysis. Based on these works, the parameters of the ammunition manipulator model are identified by combining with experimental results. Subsequently, the prediction of model dynamic response under various working conditions is verified, which shows its excellent robustness. Our research can not only provide theoretical support for the further study of the ammunition manipulator, but also provide reference for the study of the dynamics of multibody system with thin wall structure.

摘要

薄壁结构是机械设计中常用的结构形式, 其柔性动力学问题一直是工程研究的前沿. 针对具有薄壁结构特性的弹药机械臂, 发 展了一种基于板壳理论的弹药机械臂柔性多体动力学建模方法. 我们在浮动参考坐标框架下, 得到了Reissner-Mindlin壳结构的运动学 方程, 其中结构膜变形和弯曲变形与刚性运动的耦合, 这是区别于实体结构的特点. 为了克服壳体单元模拟中的膜锁定和剪切锁定问 题, 引入一种基于边中心的应变平滑DSG (ECSS-DSG)单元对结构离散. 该方法可以获得更好的膜变形和弯曲变形行为, 并且有效克服 剪切自锁问题, 在结构模态分析中表现出更好的效果. 在此基础上, 结合实验对弹药机械臂模型参数进行了辨识, 并且对辨识模型在各 种工况下的动态响应进行了验证, 证明了本文方法具有良好的鲁棒性. 本文的工作不仅可以为弹药机械臂的进一步研究提供理论支撑, 而且可以为薄壁结构多体系统的动力学研究提供参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. L. Hou, J. M. Qiao, and C. M. Liu, Automatic Loading System of Artillery (in Chinese) (Weapons Industry Press, Beijing, 2010).

    Google Scholar 

  2. F. Liu, and D. Jin, A high-efficient finite difference method for flexible manipulator with boundary feedback control, Space Sci. Technol. 2021, 2021/9874563 (2021).

    Article  Google Scholar 

  3. J. Li, Y. Wang, Z. Liu, X. Jing, and C. Hu, A new recursive composite adaptive controller for robot manipulators, Space Sci. Technol. 2021, 2021/9801421 (2021).

    Article  Google Scholar 

  4. S. C. Nie, L. F. Qian, L. M. Chen, L. F. Tian, and Q. Zou, Barrier Lyapunov functions-based dynamic surface control with tracking error constraints for ammunition manipulator electro-hydraulic system, Defence Tech. 17, 836 (2021).

    Article  Google Scholar 

  5. Y. Guo, and B. Hou, Implicit Lyapunov function-based tracking control of a novel ammunition autoloader with base oscillation and payload uncertainty, Nonlinear Dyn. 87, 741 (2017).

    Article  Google Scholar 

  6. Z. Chen, L. Qian, G. Chen, S. Nie, Q. Yin, and C. Yue, Dynamics of luffing motion of a hydraulically driven shell manipulator with revolute clearance joints, Defence Tech. 18, 689 (2022).

    Article  Google Scholar 

  7. P. Krysl, and J. S. Chen, Benchmarking computational shell models, Arch Computat. Methods Eng. 30, 301 (2023).

    Article  Google Scholar 

  8. E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech. 12, A69 (1945).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech. 18, 31 (1951).

    Article  MATH  Google Scholar 

  10. A. Tessler, and T. J. R. Hughes, A three-node mindlin plate element with improved transverse shear, Comput. Methods Appl. Mech. Eng. 50, 71 (1985).

    Article  MATH  Google Scholar 

  11. J. Tang, L. Qian, and G. Chen, A smoothed GFEM based on taylor expansion and constrained MLS for analysis of Reissner-Mindlin plate, Int. J. Comput. Methods 18, 2150048 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Torabi, J. Niiranen, and R. Ansari, Nonlinear finite element analysis within strain gradient elasticity: Reissner-Mindlin plate theory versus three-dimensional theory, Eur. J. Mech.-A Solids 87, 104221 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  13. X. Ye, S. Zhang, and Z. Zhang, A locking-free weak Galerkin finite element method for Reissner-Mindlin plate on polygonal meshes, Comput. Math. Appl. 80, 906 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  14. K. J. Bathe, and E. N. Dvorkin, A formulation of general shell elements—the use of mixed interpolation of tensorial components, Int. J. Numer. Meth. Eng. 22, 697 (1986).

    Article  MATH  Google Scholar 

  15. Y. Lee, P. S. Lee, and K. J. Bathe, The MITC3+ shell element and its performance, Comput. Struct. 138, 12 (2014).

    Article  Google Scholar 

  16. Y. Ko, P. S. Lee, and K. J. Bathe, The MITC4+ shell element and its performance, Comput. Struct. 169, 57 (2016).

    Article  Google Scholar 

  17. K. U. Bletzinger, M. Bischoff, and E. Ramm, A unified approach for shear-locking-free triangular and rectangular shell finite elements, Comput. Struct. 75, 321 (2000).

    Article  Google Scholar 

  18. S. Li, J. Zhang, and X. Cui, Nonlinear dynamic analysis of shell structures by the formulation based on a discrete shear gap, Acta Mech 230, 3571 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. S. Chen, C. T. Wu, S. Yoon, and Y. You, A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. Meth. Eng. 50, 435 (2001).

    Article  MATH  Google Scholar 

  20. G. R. Liu, and T. Nguyen-Thoi, Smoothed Finite Element Methods (CRC Press, Boca Raton, 2010).

    Google Scholar 

  21. G. R. Liu, T. Nguyen-Thoi, H. Nguyen-Xuan, and K. Y. Lam, A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput. Struct. 87, 14 (2009).

    Article  Google Scholar 

  22. T. Nguyen-thoi, G. R. Liu, and H. Nguyen-xuan, Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems, Int. J. Comput. Methods 06, 633 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  23. G. R. Liu, T. Nguyen-Thoi, and K. Y. Lam, An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids, J. Sound Vib. 320, 1100 (2009).

    Article  Google Scholar 

  24. H. Nguyen-Xuan, T. Rabczuk, N. Nguyen-Thanh, T. Nguyen-Thoi, and S. Bordas, A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Comput. Mech. 46, 679 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Yang, D. Hu, X. Han, and G. Ma, An extended edge-based smoothed discrete shear gap method for free vibration analysis of cracked Reissner-Mindlin plate, Appl. Math. Model. 51, 477 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Lee, and P. S. Lee, A new strain smoothing method for triangular and tetrahedral finite elements, Comput. Methods Appl. Mech. Eng. 341, 939 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Lee, and P. S. Lee, The strain-smoothed MITC3+ shell finite element, Comput. Struct. 223, 106096 (2019).

    Article  Google Scholar 

  28. C. Lee, D. H. Lee, and P. S. Lee, The strain-smoothed MITC3+ shell element in nonlinear analysis, Comput. Struct. 266, 106768 (2022).

    Article  Google Scholar 

  29. J. Tang, G. Chen, and Y. Ge, An edge center-based strain-smoothing triangular and tetrahedral element for analysis of elasticity, Eur. J. Mech.-A Solids 95, 104606 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Chen, L. Chen, and J. Tang, An edge center based strain-smoothing element with discrete shear gap for the analysis of Reissner-Mindlin shell, Thin-Walled Struct. 175, 109140 (2022).

    Article  Google Scholar 

  31. O. P. Agrawal, and A. A. Shabana, Application of deformable-body mean axis to flexible multibody system dynamics, Comput. Methods Appl. Mech. Eng. 56, 217 (1986).

    Article  MATH  Google Scholar 

  32. A. A. Shabana, Flexible multibody dynamics: Review of past and recent developments, Multibody Syst. Dyn. 1, 189 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. A. Shabana, Dynamics of Multibody Systems (Cambridge University Press, New York, 2005).

    Book  MATH  Google Scholar 

  34. G. Liang, Y. Huang, H. Li, X. Chen, and J. Lin, L1-norm based dynamic analysis of flexible multibody system modeled with trimmed isogeometry, Comput. Methods Appl. Mech. Eng. 394, 114760 (2022).

    Article  MATH  Google Scholar 

  35. A. Cammarata, R. Sinatra, and P. D. Maddìo, Interface reduction in flexible multibody systems using the floating frame of reference formulation, J. Sound Vib. 523, 116720 (2022).

    Article  Google Scholar 

  36. A. Cammarata, Global flexible modes for the model reduction of planar mechanisms using the finite-element floating frame of reference formulation, J. Sound Vib. 489, 115668 (2020).

    Article  Google Scholar 

  37. A. Cammarata, and C. M. Pappalardo, On the use of component mode synthesis methods for the model reduction of flexible multibody systems within the floating frame of reference formulation, Mech. Syst. Signal Process. 142, 106745 (2020).

    Article  Google Scholar 

  38. J. Ma, J. Wang, Y. Han, S. Dong, L. Yin, and Y. Xiao, Towards data-driven modeling for complex contact phenomena via self-optimized artificial neural network methodology, Mech. Mach. Theor. 182, 105223 (2023).

    Article  Google Scholar 

  39. D. Yang, Z. R. Lu, J. Liu, and L. Wang, An alternate state-space algorithm for dynamic solution, sensitivity analysis and parameter identification of dry friction systems, J. Sound Vib. 544, 117383 (2023).

    Article  Google Scholar 

  40. F. Han, X. Guo, and H. Gao, Bearing parameter identification of rotor-bearing system based on Kriging surrogate model and evolutionary algorithm, J. Sound Vib. 332, 2659 (2013).

    Article  Google Scholar 

  41. Y. Wang, Y. Zhang, D. Xu, and W. Miao, Improved whale optimization-based parameter identification algorithm for dynamic deformation of large ships, Ocean Eng. 245, 110392 (2022).

    Article  Google Scholar 

  42. A. Baklouti, K. Dammak, and A. El Hami, Robust method for the identification of dynamical anisotropic flexible bearing parameters using multi-objective optimization and structural modification technique, Mech. Syst. Signal Process. 187, 109899 (2023).

    Article  Google Scholar 

  43. J. Ma, G. Chen, L. Ji, L. Qian, and S. Dong, A general methodology to establish the contact force model for complex contacting surfaces, Mech. Syst. Signal Process. 140, 106678 (2020).

    Article  Google Scholar 

  44. M. Grotjahn, M. Daemi, and B. Heimann, Friction and rigid body identification of robot dynamics, Int. J. Solids Struct. 38, 1889 (2001).

    Article  MATH  Google Scholar 

  45. M. Sharifzadeh, A. Arian, A. Salimi, M. Tale Masouleh, and A. Kalhor, An experimental study on the direct & indirect dynamic identification of an over-constrained 3-DOF decoupled parallel mechanism, Mech. Mach. Theor. 116, 178 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11472137, U2141246, 12002065, and 12002066), and Hunan Natural Science Foundation (Grant No. 2021JJ40556).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Jinsong Tang: Methodology, Formal analysis, Software, Writing–original draft, Writing–review & editing. Linfang Qian: Supervision, Conceptualization. Jia Ma: Investigation, Funding acquisition, Writing–review & editing. Longmiao Chen: Funding acquisition, Resources. Guangsong Chen: Conceptualization, Investigation. Shuai Dong: Validation, Funding acquisition.

Corresponding authors

Correspondence to Linfang Qian  (钱林方) or Jia Ma  (马佳).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Qian, L., Ma, J. et al. Flexible dynamics modeling and identification of thin-walled ammunition manipulator. Acta Mech. Sin. 40, 523219 (2024). https://doi.org/10.1007/s10409-023-23219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23219-x

Navigation