Skip to main content
Log in

Theoretical analysis for the enhanced mechanism and optimal design of the backing layer on improving the ballistic resistance of the ceramic composite armor

轻质层对提高陶瓷复合装甲弹道阻力影响的理论与数值分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Ceramic composite armor, mainly composed of ceramic and backing layers, has been widely used in impact protection. However, the quantitative understanding and analysis for the role of the backing layer in improving the ballistic resistance of the ceramic composite armor system is still lacking. In this paper, by taking the B4C/UHMWPE bi-layer armor system as an example, the enhanced mechanism of the UHMWPE layer in improving the ballistic resistance of the ceramic composite armor and the appropriate UHMWPE thickness are systematically studied theoretically. A theoretical model predicting the residual velocity of a bi-layer armor system is developed and verified. Specifically, the dissipated energy associated with plasticity, fracture and friction and the stored energy composed of the elastic strain energy and kinetic energy, is theoretically obtained, respectively. The theoretical results show that as the increase of the UHMWPE thickness, the dissipated energy monotonically increases, while the stored energy first increases and then decreases with the appearance of a turning point due to the dominant mechanism of the stored energy changing from the maximum stored energy of the system inherently to residual kinetic energy. Furthermore, for a given ballistic resistance, a reference value for the optimal UHMWPE thickness to lower the areal density is proposed according to the transition of the stored energy, which is related to the ceramic thickness, impact velocity and the mass of the projectile. The study in this paper helps guide the lightweight design of ceramic composite armor.

摘要

陶瓷复合装甲主要由陶瓷层和背板层组成, 广泛应用于冲击防护. 然而, 目前仍缺乏背板层在提高陶瓷复合装甲系统防弹性能方面的定量认识和分析. 本文以B4C/UHMWPE双层装甲体系为例, 从理论上系统地研究了UHMWPE层在提高陶瓷复合装甲弹道阻力方面的增强机理和适合UHMWPE厚度的选取. 开发并验证了预测双层装甲系统剩余速度的理论模型. 具体而言, 分别从理论上获得与塑性、 断裂和摩擦相关的耗散能以及由弹性应变能和动能组成的储存能. 理论结果表明, 随着UHMWPE层厚度的增加, 耗散能单调增加, 而储存能则先增加后减少, 并会出现一个转折点, 这是由于储存能的主导机制由系统固有的最大储存能转变为剩余动能. 此外, 对于给定的弹道阻力, 根据存储能的转变提出了为降低面密度的最佳UHMWPE厚度的参考值, 这与陶瓷厚度、 冲击速度和弹丸质量有关. 本文的研究有助于指导陶瓷复合装甲的轻量化设计.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. Fang, W. Li, T. Cheng, Z. Qu, Y. Chen, R. Wang, and S. Ai, Review on mechanics of ultra-high-temperature materials, Acta Mech. Sin. 37, 1347 (2021).

    Article  MathSciNet  Google Scholar 

  2. M. L. Wilkins, Mechanics of penetration and perforation, Int. J. Eng. Sci. 16, 793 (1978).

    Article  Google Scholar 

  3. M. E. Backman, and W. Goldsmith, The mechanics of penetration of projectiles into targets, Int. J. Eng. Sci. 16, 1 (1978).

    Article  Google Scholar 

  4. B. Tepeduzu, and R. Karakuzu, Ballistic performance of ceramic/composite structures, Ceram. Int. 45, 1651 (2019).

    Article  Google Scholar 

  5. Y. Xie, T. Wang, L. Wang, Y. Yang, and X. Sha, Numerical investigation of ballistic performance of SiC/TC4/UHMWPE composite armor against 7.62 mm AP projectile, Ceram. Int. 48, 24079 (2022).

    Article  Google Scholar 

  6. K. Krishnan, S. Sockalingam, S. Bansal, and S. D. Rajan, Numerical simulation of ceramic composite armor subjected to ballistic impact, Compos. Part B-Eng. 41, 583 (2010).

    Article  Google Scholar 

  7. W. Liu, Z. Chen, X. Cheng, Y. Wang, A. R. Amankwa, and J. Xu, Design and ballistic penetration of the ceramic composite armor, Compos. Part B-Eng. 84, 33 (2016).

    Article  Google Scholar 

  8. A. Serjouei, G. Gour, X. Zhang, S. Idapalapati, and G. E. B. Tan, On improving ballistic limit of bi-layer ceramic-metal armor, Int. J. Impact Eng. 105, 54 (2017).

    Article  Google Scholar 

  9. F. Yang, Z. Li, Z. Zhuang, and Z. Liu, Evaluating the blast mitigation performance of hard/soft composite structures through field explosion experiment and numerical analysis, Acta Mech. Sin. 38, 121238 (2022).

    Article  Google Scholar 

  10. D. B. Rahbek, J. W. Simons, B. B. Johnsen, T. Kobayashi, and D. A. Shockey, Effect of composite covering on ballistic fracture damage development in ceramic plates, Int. J. Impact Eng. 99, 58 (2017).

    Article  Google Scholar 

  11. D. B. Rahbek, and B. B. Johnsen, Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles, Int. J. Impact Eng. 133, 103332 (2019).

    Article  Google Scholar 

  12. G. Guo, S. Alam, and L. D. Peel, An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles, Int. J. Impact Eng. 157, 104000 (2021).

    Article  Google Scholar 

  13. D. Hu, Y. Zhang, Z. Shen, and Q. Cai, Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems, Ceram. Int. 43, 10368 (2017).

    Article  Google Scholar 

  14. G. F. Li, L. Yang, H. Xu, Y. Y. Guo, Z. W. Wang, L. Wang, C. Miao, and Y. C. Wu, A study of the ballistic protection mechanism of two kinds of structure against 7.62×54 mm ball ammunition, J. Phys.-Conf. Ser. 1507, 032025 (2020).

    Article  Google Scholar 

  15. L. Peng, M. T. Tan, X. Zhang, G. Han, W. Xiong, M. Al Teneiji, and Z. W. Guan, Investigations of the ballistic response of hybrid composite laminated structures, Compos. Struct. 282, 115019 (2021).

    Article  Google Scholar 

  16. B. Zhang, Y. Wang, S. Du, Z. Yang, H. Cheng, and Q. Fan, Influence of backing plate support conditions on armor ceramic protection efficiency, Materials 13, 3427 (2020).

    Article  Google Scholar 

  17. J. G. Hetherington, The optimization of two component composite armours, Int. J. Impact Eng. 12, 409 (1992).

    Article  Google Scholar 

  18. A. L. Florence, Interaction of Projectiles and Composite Armor, Part II. Stanford Research Inst Menlo Park CA, 1969.

    Book  Google Scholar 

  19. M. Lee, and Y. H. Yoo, Analysis of ceramic/metal armour systems, Int. J. Impact Eng. 25, 819 (2001).

    Article  Google Scholar 

  20. M. M. Shokrieh, and G. H. Javadpour, Penetration analysis of a projectile in ceramic composite armor, Compos. Struct. 82, 269 (2008).

    Article  Google Scholar 

  21. Z. N. Zhao, B. Han, R. Zhang, Q. Zhang, Q. C. Zhang, C. Y. Ni, and T. J. Lu, Enhancement of UHMWPE encapsulation on the ballistic performance of bi-layer mosaic armors, Compos. Part B-Eng. 221, 109023 (2021).

    Article  Google Scholar 

  22. P. Hu, Y. Cheng, P. Zhang, J. Liu, H. Yang, and J. Chen, A metal/UHMWPE/SiC multi-layered composite armor against ballistic impact of flat-nosed projectile, Ceram. Int. 47, 22497 (2021).

    Article  Google Scholar 

  23. Z. Shen, D. Hu, G. Yang, and X. Han, Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet, Compos. Struct. 213, 209 (2019).

    Article  Google Scholar 

  24. Y. Zhang, H. Dong, K. Liang, and Y. Huang, Impact simulation and ballistic analysis of B4C composite armour based on target plate tests, Ceram. Int. 47, 10035 (2021).

    Article  Google Scholar 

  25. P. C. Den Reijer, Impact on ceramic faced armour, 1993.

  26. A. Tate, A theory for the deceleration of long rods after impact, J. Mech. Phys. Solids 15, 387 (1967).

    Article  Google Scholar 

  27. I. S. Chocron Benloulo, and V. Sánchez-Gálvez, A new analytical model to simulate impact onto ceramic/composite armors, Int. J. Impact Eng. 21, 461 (1998).

    Article  Google Scholar 

  28. Y. Peng, H. Wu, Q. Fang, J. Z. Liu, and Z. M. Gong, Impact resistance of basalt aggregated UHP-SFRC/fabric composite panel against small caliber arm, Int. J. Impact Eng. 88, 201 (2016).

    Article  Google Scholar 

  29. R. Zhang, L. S. Qiang, B. Han, Z. Y. Zhao, Q. C. Zhang, C. Y. Ni, and T. J. Lu, Ballistic performance of UHMWPE laminated plates and UHMWPE encapsulated aluminum structures: Numerical simulation, Compos. Struct. 252, 112686 (2020).

    Article  Google Scholar 

  30. H. Wang, J. Wang, K. Tang, X. Chen, and Y. Li, Investigation on the Damage Mode and Anti-penetration Performance of B4C/UHMWPE composite targets for different incident velocities and angles, J. Phys.-Conf. Ser. 1855, 012010 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11972205, 11921002, and 11972210).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Shanglin Yang: Conceptualization, Methodology, Data curation, Validation, Formal analysis, Investigation, Resources, Writing-original draft, Writing–review & editing. Yigang Wang: Methodology, Data curation, Resources, Writing–original draft. Yizhi Zhang: Resources, Validation. Zhanli Liu: Conceptualization, Methodology, Resources, Writing–original draft, Writing–review & editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Zhanli Liu  (柳占立).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Wang, Y., Zhang, Y. et al. Theoretical analysis for the enhanced mechanism and optimal design of the backing layer on improving the ballistic resistance of the ceramic composite armor. Acta Mech. Sin. 40, 123216 (2024). https://doi.org/10.1007/s10409-023-23216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23216-x

Navigation