Skip to main content
Log in

3D computational grains with embedded fibers for the direct micromechanical modeling of fiber composites

基于三维纤维计算晶粒的纤维复合材料直接细观力学建模

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

For the integrated design of composite material and structures, it is essential to have an effective micromechanical numerical tool to link macroscopic material properties to microstructural configurations. In this paper, 3D computational grains (CGs) with embedded fibers are proposed for the first time, for the direct micromechanical modeling of fiber composites. The microstructure of a unidirectional lamina with random fibers can be assembled by many CGs, and the stiffness matrix of each CG with an embedded fiber can be directly computed by combining two new algorithms. On one hand, a new kind of Trefftz trial displacement field based on scaled cylindrical harmonics is independently assumed, in addition to inter-elemental displacement interpolations with surface nodal degrees of freedom (DoFs). On the other hand, a new kind of multi-field boundary variational principle is proposed to relate independently assumed Trefftz fields to nodal DoFs and to derive the stiffness matrix. Numerical examples demonstrate that without the traditional fine meshing, accurate distribution of micro-stresses in a representative volume element (RVE) with thousands of fibers can be directly computed, and the equivalent orthotropic properties of fiber composites can be predicted. This is also the first time that a three-dimensional finite element with an embedded fiber is developed.

摘要

面向纤维复合材料与结构的优化设计需要, 建立高效准确的纤维复材细观力学仿真工具具有重要意义. 本文首次提出了包含内嵌纤维的三维计算晶粒(computational grains), 用于纤维增强复合材料的直接细观力学建模. 基于所开发的纤维计算晶粒方法, 可以直接构造含有多根随机分布纤维的代表性体积单元(RVE). 此外, 本文提出了一种基于缩放柱调和函数的Papkovich-Neuber解来表征纤维和基体中独立的Trefftz试函数位移场, 并且开发了一种新的多场边界变分原理来计算纤维计算晶粒的刚度矩阵. 数值算例表明, 对于内嵌大量随机分布纤维的RVE, 纤维计算晶粒不需要构造复杂的网格, 即可快速计算RVE的精确应力场, 并预测其有效力学性能. 此外, 这也是内嵌纤维的三维有限元单元的首次提出.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Qiu, X. Zhang, S. Xia, T. Sun, Y. Ling, S. Zhou, H. Guang, Y. Chen, Z. Xu, M. Liang, and H. Zou, Magnetic graphene oxide/carbon fiber composites with improved interfacial properties and electromagnetic interference shielding performance, Compos. Part A-Appl. Sci. Manuf. 155, 106811 (2022).

    Article  Google Scholar 

  2. N. R. J. Hynes, N. J. Vignesh, J. T. W. Jappes, P. S. Velu, C. Barile, M. A. Ali, M. U. Farooq, and C. I. Pruncu, Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: Numerical simulations and experimental validation, Compos. Sci. Tech. 221, 109303 (2022).

    Article  Google Scholar 

  3. Z. Huang, K. Fu, Y. Li, and C. Yan, Development of impact resistant 3D printed multi-layer carbon fibre reinforced composites by structural design, Acta Mech. Sin. 38, 121428 (2022).

    Article  MathSciNet  Google Scholar 

  4. H. Xin, A. Mosallam, J. A. F. O. Correia, Y. Liu, J. He, and Y. Sun, Material-structure integrated design optimization of GFRP bridge deck on steel girder, Structures 27, 1222 (2020).

    Article  Google Scholar 

  5. R. Hill, Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour, J. Mech. Phys. Solids 12, 199 (1964).

    Article  MathSciNet  Google Scholar 

  6. Z. Hashin, On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry, J. Mech. Phys. Solids 13, 119 (1965).

    Article  Google Scholar 

  7. R. Hill, Theory of mechanical properties of fibre-strengthened materials—III. self-consistent model, J. Mech. Phys. Solids 13, 189 (1965).

    Article  Google Scholar 

  8. Y. Benveniste, G. J. Dvorak, and T. Chen, Stress fields in composites with coated inclusions, Mech. Mater. 7, 305 (1989).

    Article  Google Scholar 

  9. T. Mori, and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall. 21, 571 (1973).

    Article  Google Scholar 

  10. J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A 241, 376 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Ferrari, Asymmetry and the high concentration limit of the Mori-Tanaka effective medium theory, Mech. Mater. 11, 251 (1991).

    Article  Google Scholar 

  12. Q. Guo, W. Yao, W. Li, and N. Gupta, Constitutive models for the structural analysis of composite materials for the finite element analysis: A review of recent practices, Compos. Struct. 260, 113267 (2021).

    Article  Google Scholar 

  13. S. Bahl, and A. K. Bagha, Finite element modeling and simulation of the fiber-matrix interface in fiber reinforced metal matrix composites, Mater. Today-Proc. 39, 70 (2021).

    Article  Google Scholar 

  14. M. Katouzian, S. Vlase, and M. L. Scutaru, Finite element method-based simulation creep behavior of viscoelastic carbon-fiber composite, Polymers 13, 1017 (2021).

    Article  Google Scholar 

  15. C. Stephen, S. R. Behara, B. Shivamurthy, R. Selvam, S. Kannan, and M. Abbadi, Finite element study on the influence of fiber orientation on the high velocity impact behavior of fiber reinforced polymer composites, Int. J. Interact. Des. Manuf. 16, 459 (2022).

    Article  Google Scholar 

  16. F. Yang, Z. Li, Z. Zhuang, and Z. Liu, Evaluating the blast mitigation performance of hard/soft composite structures through field explosion experiment and numerical analysis, Acta Mech. Sin. 38, 121238 (2022).

    Article  Google Scholar 

  17. A. G. Adeniyi, S. A. Adeoye, D. V. Onifade, and J. O. Ighalo, Multi-scale finite element analysis of effective elastic property of sisal fiber-reinforced polystyrene composites, Mech. Adv. Mater. Struct. 28, 1245 (2021).

    Article  Google Scholar 

  18. X. Wang, H. Li, T. Yang, Z. Zhang, C. Zheng, W. Wang, D. Zhang, and K. Qian, Multi-scale strength and buckling analysis of 3D woven composite spherical shells subjected to hydrostatic pressure, J. Industrial Textiles 51, 6236S (2022).

    Article  Google Scholar 

  19. M. Chen, and Q. Liu, Multi-scale modelling of progressive damage and failure behaviour of 2D woven SiC/SiC composites, Ceram. Int. 47, 28821 (2021).

    Article  Google Scholar 

  20. E. Kheng, R. D’Mello, and A. Waas, A multi-scale model for the tensile failure of twill textile composites, Compos. Struct. 307, 116614 (2023).

    Article  Google Scholar 

  21. H. Dang, P. Liu, Y. Zhang, Z. Zhao, L. Tong, C. Zhang, and Y. Li, Theoretical prediction for effective properties and progressive failure of textile composites: A generalized multi-scale approach, Acta Mech. Sin. 37, 1222 (2021).

    Article  MathSciNet  Google Scholar 

  22. A. Bhaduri, A. Gupta, and L. Graham-Brady, Stress field prediction in fiber-reinforced composite materials using a deep learning approach, Compos. Part B-Eng. 238, 109879 (2022).

    Article  Google Scholar 

  23. S. A. Tabatabaei, S. V. Lomov, and I. Verpoest, Assessment of embedded element technique in meso-FE modelling of fibre reinforced composites, Compos. Struct. 107, 436 (2014).

    Article  Google Scholar 

  24. M. Mahdi, and L. Zhang, An adaptive three-dimensional finite element algorithm for the orthogonal cutting of composite materials, J. Mater. Process. Tech. 113, 1 (2001).

    Article  Google Scholar 

  25. S. Ghosh, and R. L. Mallett, Voronoi cell finite elements, Comput. Struct. 50, 33 (1994).

    Article  MATH  Google Scholar 

  26. S. Ghosh, K. Lee, and S. Moorthy, Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method, Int. J. Solids Struct. 32, 27 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  27. T. H. H. Pian, Derivation of element stiffness matrices by assumed stress distributions, AIAA J. 2, 1333 (1964).

    Article  Google Scholar 

  28. P. Raghavan, and S. Ghosh, A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding, Mech. Mater. 37, 9 (2005).

    Google Scholar 

  29. S. Ghosh, and S. Moorthy, Three dimensional Voronoi cell finite element model for microstructures with ellipsoidal heterogeneties, Comput. Mech. 34, 510 (2004).

    Article  MATH  Google Scholar 

  30. R. Zhang, T. Wang, and R. Guo, Modeling of interphases in multiple heterogeneities reinforced composites using Voronoi cell finite elements, Acta Mech. Sin. 36, 887 (2020).

    Article  MathSciNet  Google Scholar 

  31. S. Li, and S. Ghosh, Modeling interfacial debonding and matrix cracking in fiber reinforced composites by the extended Voronoi cell FEM, Finite Elem. Anal. Des. 43, 397 (2007).

    Article  Google Scholar 

  32. L. Dong, and S. N. Atluri, Development of 3D T-Trefftz Voronoi cell finite elements with/without spherical voids &/or elastic/rigid inclusions for micromechanical modeling of heterogeneous materials, CMC-Comput. Mater. Con. 29, 2 (2012).

    Google Scholar 

  33. L. Dong, and S. N. Atluri, Development of 3D Trefftz Voronoi cells with ellipsoidal voids &/or elastic/rigid inclusions for micromechanical modeling of heterogeneous materials, CMC-Comput. Mater. Con. 30, 1 (2012).

    Google Scholar 

  34. J. Wang, P. Yan, L. Dong, and S. N. Atluri, Direct numerical simulation of complex nano-structured composites, considering interface stretching and bending effects, using nano-computational grains, Int. J. Numer. Methods Eng. 122, 1476 (2021).

    Article  MathSciNet  Google Scholar 

  35. G. Wang, L. Dong, J. Wang, and S. Atluri, Three-dimensional Trefftz computational grains for the micromechanical modeling of heterogeneous media with coated spherical inclusions, J. Mech. Mater. Struct. 13, 505 (2018).

    Article  MathSciNet  Google Scholar 

  36. P. L. Bishay, L. Dong, and S. N. Atluri, Multi-physics computational grains (MPCGs) for direct numerical simulation (DNS) of piezoelectric composite/porous materials and structures, Comput. Mech. 54, 1129 (2014).

    Article  MATH  Google Scholar 

  37. Y. Huang, G. Wang, L. Dong, and S. N. Atluri, 3D viscoelastic computational grains with spherical inclusions with or without interphases/coatings for micromechanical modeling of heterogeneous materials, Int. J. Numer. Methods Eng. 122, 4966 (2021).

    Article  MathSciNet  Google Scholar 

  38. L. Ai, Theory of Elasticity, 4th ed., translated by Belyaev (Springer, Berlin, 2005).

    Google Scholar 

  39. J. D. Eshelby, The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. Lond. A 252, 561 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  40. Z. H. Tong, S. H. Lo, C. P. Jiang, and Y. K. Cheung, An exact solution for the three-phase thermo-electro-magneto-elastic cylinder model and its application to piezoelectric-magnetic fiber composites, Int. J. Solids Struct. 45, 5205 (2008).

    Article  MATH  Google Scholar 

  41. C. P. Jiang, Y. L. Xu, Y. K. Cheung, and S. H. Lo, A rigorous analytical method for doubly periodic cylindrical inclusions under longitudinal shear and its application, Mech. Mater. 36, 3 (2004).

    Article  Google Scholar 

  42. P. M. No, Finite Element Method: Simulation, Numerical Analysis and Solution Techniques (IntechOpen, London, 2018).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12072011 and 12102023).

Author information

Authors and Affiliations

Authors

Contributions

Yezeng Huang designed the research. Yezeng Huang and Junbo Wang wrote the first draft of the manuscript. Yezeng Huang and Guannan Wang provided the computer code and the supporting algorithms. Mingjing Li and Guannan Wang helped organize the manuscript. Leiting Dong and Satya N. Atluri revised and edited the final version.

Corresponding authors

Correspondence to Junbo Wang  (王俊博) or Leiting Dong  (董雷霆).

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Wang, J., Li, M. et al. 3D computational grains with embedded fibers for the direct micromechanical modeling of fiber composites. Acta Mech. Sin. 39, 423179 (2023). https://doi.org/10.1007/s10409-023-23179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23179-x

Navigation