Skip to main content
Log in

Development of impact resistant 3D printed multi-layer carbon fibre reinforced composites by structural design

基于结构设计的耐冲击3D打印多层碳纤维增强复合材料研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study, a high impact resistant multi-layered composite consisting of continuous carbon fibre/nylon (CCF) and short carbon fibre/nylon (SCF) layers is developed via 3D printing technology. The effect of CCF/SCF layers configuration on the impact resistance is investigated by low-velocity impact test, and the impact failure mechanism of the 3D printed composites is explored by microscopic observations and finite element (FE) simulation analysis. The results show that the 3D printed multi-layered composite with SCF layers distributed in the middle (HFA) exhibits higher impact resistant performance than the specimens with alternating SCF/CCF layers (HFB) and CCF layers distributed in the middle (HFC). The effect of CCF/SCF layers proportion on the impact performance is also studied by FE simulation, and the results show that the specimen with a CCF/SCF proportion of 7.0 exhibits the highest impact strength.

摘要

在本研究中, 通过3D打印技术, 开发了一种由连续碳纤维/尼龙(CCF)和短碳纤维/尼龙(SCF)组成的高抗冲击多层复合材料.通过低速冲击试验研究了CCF/SCF层分布结构对复合材料抗冲击性能的影响, 并通过微观观察和有限元模拟分析探讨了复合材料的冲击破坏机理. 结果表明: SCF层位于试样中间的3D打印多层复合材料具有更高的抗冲击性能; 通过有限元模拟研究了CCF/SCF层比例对冲击性能的影响, 当CCF/SCF层比例为7.0时, 冲击强度最高.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Bhudolia, P. Perrotey, and S. C. Joshi, Mode I fracture toughness and fractographic investigation of carbon fibre composites with liquid Methylmethacrylate thermoplastic matrix, Compos. Part B-Eng. 134, 246 (2018).

    Article  Google Scholar 

  2. D. D. L. Chung, Processing-structure-property relationships of continuous carbon fiber polymer-matrix composites, Mater. Sci. Eng.-R-Rep. 113, 1 (2017).

    Article  Google Scholar 

  3. L. Daelemans, S. van der Heijden, I. De Baere, H. Rahier, W. Van Paepegem, and K. De Clerck, Damage-resistant composites using electrospun nanofibers: A multiscale analysis of the toughening mechanisms, ACS Appl. Mater. Interfaces 8, 11806 (2016).

    Article  Google Scholar 

  4. E. M. Strungar, A. S. Yankin, E. M. Zubova, A. V. Babushkin, and A. N. Dushko, Experimental study of shear properties of 3D woven composite using digital image correlation and acoustic emission, Acta Mech. Sin. 36, 448 (2020).

    Article  Google Scholar 

  5. C. Chu, H. Ge, N. Gu, K. Zhang, and C. Jin, Interfacial microstructure and mechanical properties of carbon fiber composite modified with carbon dots, Compos. Sci. Tech. 184, 107856 (2019).

    Article  Google Scholar 

  6. L. G. Blok, M. L. Longana, H. Yu, and B. K. S. Woods, An investigation into 3D printing of fibre reinforced thermoplastic composites, Addit. Manuf. 22, 176 (2018).

    Google Scholar 

  7. J. Pumchusak, N. Thajina, W. Keawsujai, and P. Chaiwan, Effect of organo-modified montmorillonite nanoclay on mechanical, thermo-mechanical, and thermal properties of carbon fiber-reinforced phenolic composites, Polymers 13, 754 (2021).

    Article  Google Scholar 

  8. X. Z. Zhang, Y. J. Song, and Y. D. Huang, Properties of silsesquioxane coating modified carbon fibre/polyarylacetylene composites, Compos. Sci. Tech. 67, 3014 (2007).

    Article  Google Scholar 

  9. Z. Jia, and L. Wang, 3D printing of biomimetic composites with improved fracture toughness, Acta Mater. 173, 61 (2019).

    Article  Google Scholar 

  10. H. L. Fan, T. Zeng, D. N. Fang, and W. Yang, Mechanics of advanced fiber reinforced lattice composites, Acta Mech. Sin. 26, 825 (2010).

    Article  MathSciNet  Google Scholar 

  11. C. Rice, and K. T. Tan, Horse hoof inspired biomimetic structure for improved damage tolerance and crack diversion, Compos. Struct. 220, 362 (2019).

    Article  Google Scholar 

  12. L. S. Dimas, G. H. Bratzel, I. Eylon, and M. J. Buehler, Tough composites inspired by mineralized natural materials: Computation, 3D printing, and testing, Adv. Funct. Mater. 23, 4629 (2013).

    Article  Google Scholar 

  13. R. Mirzaeifar, L. S. Dimas, Z. Qin, and M. J. Buehler, Defect-tolerant bioinspired hierarchical composites: Simulation and experiment, ACS Biomater. Sci. Eng. 1, 295 (2015).

    Article  Google Scholar 

  14. Z. Jia, Y. Yu, S. Hou, and L. Wang, Biomimetic architected materials with improved dynamic performance, J. Mech. Phys. Solids 125, 178 (2019).

    Article  Google Scholar 

  15. International, A, D6110–18, Standard Test Method for Determine the Charpy Impact Resistance of Notched Specimens of Plastic,1–17 (2018).

  16. International, A, D3039/D3039M, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, 1–13 (2014).

  17. International, A, D7264/D7264M-07, Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, 1–11 (2010).

  18. G. S. Dhaliwal, and G. M. Newaz, Experimental and numerical investigation of flexural behavior of carbon fiber reinforced aluminum laminates, J. Reinforced Plast. Compos. 35, 945 (2016).

    Article  Google Scholar 

  19. M. A. Caminero, J. M. Chacón, I. García-Moreno, and G. P. Rodríguez, Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling, Compos. Part B-Eng. 148, 93 (2018).

    Article  Google Scholar 

  20. A. Öchsner, J. Gegner, W. Winter, and G. Kuhn, Experimental and numerical investigations of ductile damage in aluminium alloys, Mater. Sci. Eng.-A 318, 328 (2001).

    Article  Google Scholar 

  21. E. G. Koricho, A. Khomenko, T. Fristedt, and M. Haq, Innovative tailored fiber placement technique for enhanced damage resistance in notched composite laminate, Compos. Struct. 120, 378 (2015).

    Article  Google Scholar 

  22. T. A. Dutra, R. T. L. Ferreira, H. B. Resende, and A. Guimarães, Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic, J. Braz. Soc. Mech. Sci. Eng. 41, 133 (2019).

    Article  Google Scholar 

  23. Y. Swolfs, and S. T. Pinho, 3D printed continuous fibre-reinforced composites: Bio-inspired microstructures for improving the translaminar fracture toughness, Compos. Sci. Tech. 182, 107731 (2019).

    Article  Google Scholar 

  24. A. Qiu, K. Fu, W. Lin, C. Zhao, and Y. Tang, Modelling low-speed drop-weight impact on composite laminates, Mater. Des. 60, 520 (2014).

    Article  Google Scholar 

  25. Y. Lin, Y. Huang, T. Huang, B. Liao, D. Zhang, and C. Li, Characterization of progressive damage behaviour and failure mechanisms of carbon fibre reinforced aluminium laminates under three-point bending, Thin-Walled Struct. 135, 494 (2019).

    Article  Google Scholar 

  26. M. A. Caminero, I. García-Moreno, G. P. Rodríguez, and J. M. Chacón, Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites, Compos. Part B-Eng. 165, 131 (2019).

    Article  Google Scholar 

  27. M. Araya-Calvo, I. López-Gómez, N. Chamberlain-Simon, J. L. León-Salazar, T. Guillén-Girón, J. S. Corrales-Cordero, and O. Sánchez-Brenes, Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology, Addit. Manuf. 22, 157 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunkun Fu  (付昆昆) or Yan Li  (李岩).

Additional information

This work was supported by the National Science Fund for Distinguished Young Scholars (Grant No. 11625210), the National Science Foundation of China (Grant No. 51873153), the Shanghai Pujiang Program (Grant No. 19PJ1410000), and the Shanghai International Science and Technology Cooperation Fund Project (Grant No. 19520713000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Fu, K., Li, Y. et al. Development of impact resistant 3D printed multi-layer carbon fibre reinforced composites by structural design. Acta Mech. Sin. 38, 121428 (2022). https://doi.org/10.1007/s10409-022-09037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-09037-8

Keywords

Navigation