Skip to main content
Log in

Explicit topology optimization of three-dimensional geometrically nonlinear structures

考虑几何非线性的三维连续体结构显式拓扑优化

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this work, a three-dimensional explicit geometrically nonlinear topology optimization method is developed. Moving morphable voids (MMVs) are used to describe the optimized structures, which enjoy the advantages of fewer design variables and seamless integration with CAD system. Furthermore, attributing to the decoupling between the description of topology and finite element analysis, redundant degree of freedoms in the void regions are directly removed during mechanical analysis, and this could significantly alleviate the mesh distortion of weak elements and also improve the computational efficiency of finite element analysis in the finite deformation regime. Numerical examples verify the effectiveness of the developed method and reveal that: (1) the finite deformation has a significant influence on the optimal topology of the three-dimensional structures both for single and multiple load cases; (2) the optimized geometrically nonlinear structures may take advantage of large displacements and small strains for achieving a minimized end compliance; (3) the critical load factor should be evaluated to guarantee the validity of the optimized structures.

摘要

本文提出了一种考虑几何非线性的三维连续体结构显式拓扑优化方法. 采用移动可变形孔洞(MMV)方法描述结构, 具有设计变量少、可与CAD系统无缝集成的优点. 此外, 由于结构拓扑描述模型与有限元分析模型之间解耦, 在有限元分析中可以直接删除孔洞区域的冗余自由度, 从根本上解决有限变形拓扑优化因弱单元引起的收敛性问题, 同时显著提高了有限元分析的计算效率. 数值算例验证了该方法的有效性, 结果表明: (1) 无论单工况还是多工况载荷作用下, 几何非线性对三维结构的最优拓扑构型均具有显著影响;(2) 优化后的几何非线性结构可以充分利用大位移和小应变来降低结构柔顺度; (3) 几何非线性拓扑优化应评估优化设计的临界失稳荷载, 以保证结构服役的安全性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. P. Bendsøe, and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71, 197 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optim. 1, 193 (1989).

    Article  Google Scholar 

  3. M. Zhou, and G. I. N. Rozvany, The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Eng. 89, 309 (1991).

    Article  ADS  Google Scholar 

  4. M. Y. Wang, X. Wang, and D. Guo, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng. 192, 227 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  5. G. Allaire, F. Jouve, and A. M. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys. 194, 363 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  6. Y. M. Xie, and G. P. Steven, A simple evolutionary procedure for structural optimization, Comput. Struct. 49, 885 (1993).

    Article  Google Scholar 

  7. X. Guo, W. Zhang, and W. Zhong, Doing topology optimization explicitly and geometrically—A new moving morphable components based framework, J. Appl. Mech. 81, 081009 (2014).

    Article  ADS  Google Scholar 

  8. W. Zhang, J. Chen, X. Zhu, J. Zhou, D. Xue, X. Lei, and X. Guo, Explicit three dimensional topology optimization via moving morphable void (MMV) approach, Comput. Methods Appl. Mech. Eng. 322, 590 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  9. J. A. Norato, B. K. Bell, and D. A. Tortorelli, A geometry projection method for continuum-based topology optimization with discrete elements, Comput. Methods Appl. Mech. Eng. 293, 306 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  10. Y. Zhou, W. Zhang, J. Zhu, and Z. Xu, Feature-driven topology optimization method with signed distance function, Comput. Methods Appl. Mech. Eng. 310, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  11. Q. Li, O. Sigmund, J. S. Jensen, and N. Aage, Reduced-order methods for dynamic problems in topology optimization: A comparative study, Comput. Methods Appl. Mech. Eng. 387, 114149 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Wu, O. Sigmund, and J. P. Groen, Topology optimization of multi-scale structures: A review, Struct. Multidisc. Optim. 63, 1455 (2021).

    Article  MathSciNet  Google Scholar 

  13. G. H. Yoon, Multiphysics topology optimization scheme considering the evaporation cooling effect, Comput. Struct. 244, 106409 (2021).

    Article  Google Scholar 

  14. J. Luo, Z. Du, Y. Guo, C. Liu, W. Zhang, and X. Guo, Multi-class, multi-functional design of photonic topological insulators by rational symmetry-indicators engineering, Nanophotonics 10, 4523 (2021).

    Article  Google Scholar 

  15. K. Yuge, N. Iwai, and N. Kikuchi, Optimization of 2-D structures subjected to nonlinear deformations using the homogenization method, Struct. Optim. 17, 286 (1999).

    Article  Google Scholar 

  16. T. Buhl, C. B. W. Pedersen, and O. Sigmund, Stiffness design of geometrically nonlinear structures using topology optimization, Struct. Multidisc. Optim. 19, 93 (2000).

    Article  Google Scholar 

  17. C. B. W. Pedersen, T. Buhl, and O. Sigmund, Topology synthesis of large-displacement compliant mechanisms, Int. J. Numer. Meth. Eng. 50, 2683 (2001).

    Article  Google Scholar 

  18. H. C. Gea, and J. Luo, Topology optimization of structures with geometrical nonlinearities, Comput. Struct. 79, 1977 (2001).

    Article  Google Scholar 

  19. X. Huang, and Y. M. Xie, Topology optimization of nonlinear structures under displacement loading, Eng. Struct. 30, 2057 (2008).

    Article  Google Scholar 

  20. T. E. Bruns, and D. A. Tortorelli, Topology optimization of non-linear elastic structures and compliant mechanisms, Comput. Methods Appl. Mech. Eng. 190, 3443 (2001).

    Article  ADS  Google Scholar 

  21. D. Jung, and H. C. Gea, Topology optimization of nonlinear structures, Finite Elem. Anal. Des. 40, 1417 (2004).

    Article  Google Scholar 

  22. S. H. Ha, and S. Cho, Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh, Comput. Struct. 86, 1447 (2008).

    Article  Google Scholar 

  23. H. A. Lee, and G. J. Park, Topology optimization for structures with nonlinear behavior using the equivalent static loads method, J. Mech. Des. 134, 031004 (2012).

    Article  Google Scholar 

  24. H. Ye, B. Yuan, J. Li, X. Zhang, and Y. Sui, Geometrically nonlinear topology optimization of continuum structures based on an independent continuous mapping method, Acta Mech. Solid Sin. 34, 658 (2021).

    Article  Google Scholar 

  25. J. Li, H. Ye, B. Yuan, and N. Wei, Cross-resolution topology optimization for geometrical non-linearity by using deep learning, Struct. Multidisc. Optim. 65, 133 (2022).

    Article  MathSciNet  Google Scholar 

  26. Z. Chen, K. Long, X. Wang, J. Liu, and N. Saeed, A new geometrically nonlinear topology optimization formulation for controlling maximum displacement, Eng. Optim. 53, 1283 (2022).

    Article  MathSciNet  Google Scholar 

  27. Z. Meng, Y. Wu, X. Wang, and G. Li, A fidelity equivalence computation method for topology optimization of geometrically nonlinear structures, Eng. Optim. (2022).

  28. G. H. Yoon, and Y. Y. Kim, Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization, Int. J. Numer. Meth. Eng. 69, 2196 (2007).

    Article  MathSciNet  Google Scholar 

  29. G. H. Yoon, and Y. Y. Kim, Element connectivity parameterization for topology optimization of geometrically nonlinear structures, Int. J. Solids Struct. 42, 1983 (2005).

    Article  Google Scholar 

  30. R. D. Lahuerta, E. T. Simões, E. M. B. Campello, P. M. Pimenta, and E. C. N. Silva, Towards the stabilization of the low density elements in topology optimization with large deformation, Comput. Mech. 52, 779 (2013).

    Article  MathSciNet  Google Scholar 

  31. F. Wang, B. S. Lazarov, O. Sigmund, and J. S. Jensen, Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems, Comput. Methods Appl. Mech. Eng. 276, 453 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  32. X. S. Zhang, H. Chi, and Z. Zhao, Topology optimization of hyperelastic structures with anisotropic fiber reinforcement under large deformations, Comput. Methods Appl. Mech. Eng. 378, 113496 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  33. B. Zhu, Q. Chen, R. Wang, and X. Zhang, Structural topology optimization using a moving morphable component-based method considering geometrical nonlinearity, J. Mech. Des. 140, 081403 (2018).

    Article  Google Scholar 

  34. Q. Xia, and T. Shi, Stiffness optimization of geometrically nonlinear structures and the level set based solution, Int. J. Simul. Multisci. Des. Optim. 7, A3 (2016).

    Article  Google Scholar 

  35. S. Cho, and J. Kwak, Topology design optimization of geometrically non-linear structures using meshfree method, Comput. Methods Appl. Mech. Eng. 195, 5909 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  36. Q. He, Z. Kang, and Y. Wang, A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation, Comput. Mech. 54, 629 (2014).

    Article  MathSciNet  Google Scholar 

  37. Y. Luo, M. Y. Wang, and Z. Kang, Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique, Comput. Methods Appl. Mech. Eng. 286, 422 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  38. N. P. van Dijk, M. Langelaar, and F. van Keulen, Element deformation scaling for robust geometrically nonlinear analyses in topology optimization, Struct. Multidisc. Optim. 50, 537 (2014).

    Article  MathSciNet  Google Scholar 

  39. T. E. Bruns, and D. A. Tortorelli, An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms, Int. J. Numer. Meth. Eng. 57, 1413 (2003).

    Article  Google Scholar 

  40. R. Behrou, R. Lotfi, J. V. Carstensen, F. Ferrari, and J. K. Guest, Revisiting element removal for density-based structural topology optimization with reintroduction by Heaviside projection, Comput. Methods Appl. Mech. Eng. 380, 113799 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  41. R. Xue, C. Liu, W. Zhang, Y. Zhu, S. Tang, Z. Du, and X. Guo, Explicit structural topology optimization under finite deformation via Moving Morphable Void (MMV) approach, Comput. Methods Appl. Mech. Eng. 344, 798 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  42. W. Zhang, W. Yang, J. Zhou, D. Li, and X. Guo, Structural topology optimization through explicit boundary evolution, J. Appl. Mech. 84, 011011 (2017).

    Article  Google Scholar 

  43. Z. Du, T. Cui, C. Liu, W. Zhang, Y. Guo, and X. Guo, An efficient and easy-to-extend Matlab code of the Moving Morphable Component (MMC) method for three-dimensional topology optimization, Struct. Multidisc. Optim. 65, 158 (2022).

    Article  Google Scholar 

  44. Y. Guo, Z. Du, L. Wang, W. Meng, T. Zhang, R. Su, D. Yang, S. Tang, and X. Guo, Data-driven topology optimization (DDTO) for three-dimensional continuum structures, Struct. Multidisc. Optim. 66, 104 (2023).

    Article  MathSciNet  Google Scholar 

  45. T. Belytschko, W. K. Liu, B. Moran, and K. I. Elkhodary, Nonlinear Finite Elements for Continua and Structures, 2nd ed. (Wiley, Chichester, 2014).

    Google Scholar 

  46. K. Svanberg, The method of moving asymptotes—a new method for structural optimization, Int. J. Numer. Meth. Eng. 24, 359 (1987).

    Article  MathSciNet  Google Scholar 

  47. L. He, C. Y. Kao, and S. Osher, Incorporating topological derivatives into shape derivatives based level set methods, J. Comput. Phys. 225, 891 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  48. A. A. Novotny, and J. Sokolowski, Topological Derivatives in Shape Optimization (Springer Science & Business Media, Berlin, Heidelberg, 2012).

    Google Scholar 

  49. Z. Du, W. Zhang, Y. Zhang, R. Xue, and X. Guo, Structural topology optimization involving bi-modulus materials with asymmetric properties in tension and compression, Comput. Mech. 63, 335 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11821202, 12002073, and 12002077), the National Key Research and Development Plan (Grant No. 2020YFB1709400), Liaoning Revitalization Talents Program (Grant Nos. XLYC2001003 and XLYC1907119), Dalian Talent Innovation Program (Grant No. 2020RQ099), the Fundamental Research Funds for the Central Universities (Grant Nos. DUT20RC(3)020, DUT21RC(3)076, and DUT22QN238), and 111 Project (Grant No. B14013).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yunhang Guo: Formal analysis, Software, Visualization, Writing – original draft, Writing – review and editing. Zongliang Du: Conceptualization, Methodology, Supervision, Formal analysis, Writing – review and editing, Funding acquisition. Chang Liu: Methodology, Discussion, and Writing – review and editing. Weisheng Zhang: Methodology, Discussion, and Writing – review and editing. Riye Xue: Discussion, Software, and Writing-review and editing. Yilin Guo: Discussion, Visualization, and Writing – review and editing. Shan Tang: Conceptualization, Methodology, Supervision, Writing – review and editing, Funding acquisition. Xu Guo: Conceptualization, Methodology, Supervision, Writing-review and editing, Funding acquisition.

Corresponding authors

Correspondence to Zongliang Du  (杜宗亮) or Shan Tang  (唐山).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Du, Z., Liu, C. et al. Explicit topology optimization of three-dimensional geometrically nonlinear structures. Acta Mech. Sin. 39, 423084 (2023). https://doi.org/10.1007/s10409-023-23084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23084-x

Navigation