Skip to main content
Log in

Rubbing features of the bladed drum rotor under a novel coupled axial-radial thermal effect

轴径向耦合热效应下带叶鼓筒转子系统碰摩动力学特性

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

High temperatures in a gas turbine may lead to severe blade rubbing failure for the bladed thin drum rotor. It is essential to demonstrate such rubbing features. This paper established a bladed drum rotor model with blade rubbing induced by high temperatures. The analytical function of a coupled axial-radial temperature in the drum according to the actual thermal field analysis is obtained. The equations of motion for this rotor are derived. The dynamic model and its solution method are verified through the natural frequency comparison and the rub-impact response analysis. Thereafter numerical simulations are carried out. Results show that the heat at the turbine is transferred from its outer surface to its inner surface, then to the compressor’s inner surface along the axial direction, and finally from the compressor’s inner surface to its outer surface. This is a novel coupled axial-radial thermal effect for the gas turbine, which causes special axial and radial thermal gradients. The effect is induced by high temperatures in a gas turbine and intensifies a blade rubbing fault. Increasing the exhaust temperature aggravates the coupled axial-radial thermal effect, which causes more severe blade rubbing. Fortunately, introducing a lower temperature on the drum’s inner surface can prevent blade rubbing caused by this thermal effect.

摘要

燃气轮机高温载荷使带叶薄壁鼓筒转子发生严重的碰摩故障, 阐明其动力学特性对避免此类故障具有重要意义. 本文建立了高温热载荷下带叶薄壁鼓筒转子热弹耦合动力学模型. 根据实际的热场分析结果, 获得了鼓筒内轴径向耦合温度解析函数, 并推导出此转子系统的运动微分方程. 通过固有频率对比和碰摩响应分析, 验证了动力学模型及其求解方法的准确性. 本文重点开展了高温热载荷下带叶鼓筒转子系统碰摩动力学特性分析, 揭示出燃气轮机的轴径向耦合热效应: 高温热载荷从涡轮处鼓筒外表面向内表面传递, 再沿鼓筒轴向传递至压缩机内表面, 最后从压缩机内表面传递至其外表面. 此现象是由燃气轮机中特殊的高温载荷引起, 诱发轴向和径向耦合热梯度, 可致使叶片发生碰摩故障. 燃气轮机排气温度的升高将加剧轴径向耦合热效应, 导致更严重的叶片碰摩现象, 但在鼓筒内表面引入低温边界条件可以削弱这种热效应的不良影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Liu, D. Cao, and S. Sun, Dynamic characteristics of a disk-drumshaft rotor system with rub-impact, Nonlinear Dyn 80, 1017 (2015).

    Article  Google Scholar 

  2. N. Lesaffre, J. J. Sinou, and F. Thouverez, Contact analysis of a flexible bladed-rotor, Eur. J. Mech.-A Solids 26, 541 (2007).

    Article  Google Scholar 

  3. Y. Kang, S. Cao, Y. Hou, N. Chen, and B. Li, Dynamics research on the rubbing process and rubbing forms of rotor-blade-casing systems, Int. J. Non-Linear Mech. 147, 104242 (2022).

    Article  Google Scholar 

  4. Y. Colaïtis, and A. Batailly, The harmonic balance method with arc-length continuation in blade-tip/casing contact problems, J. Sound Vib. 502, 116070 (2021).

    Article  Google Scholar 

  5. S. K. Sinha, Dynamic characteristics of a flexible bladed-rotor with Coulomb damping due to tip-rub, J. Sound Vib. 273, 875 (2004).

    Article  Google Scholar 

  6. F. Chu, and Z. Zhang, Bifurcation and chaos in a rub-impact jeffcott rotor system, J. Sound Vib. 210, 1 (1998).

    Article  Google Scholar 

  7. J. Hong, P. Yu, D. Zhang, and Y. Ma, Nonlinear dynamic analysis using the complex nonlinear modes for a rotor system with an additional constraint due to rub-impact, Mech. Syst. Signal Process. 116, 443 (2019).

    Article  Google Scholar 

  8. H. Ma, F. Yin, Z. Wu, X. Tai, and B. Wen, Nonlinear vibration response analysis of a rotor-blade system with blade-tip rubbing, Nonlinear Dyn. 84, 1225 (2016).

    Article  MathSciNet  Google Scholar 

  9. H. Kou, and H. Yuan, Rub-induced non-linear vibrations of a rotating large deflection plate, Int. J. Non-Linear Mech. 58, 283 (2014).

    Article  Google Scholar 

  10. H. Kou, J. Du, M. Liang, L. Zhu, L. Zeng, Z. Zhu, and F. Zhang, Nonlinear characteristics of contact-induced vibrations of the rotating variable thickness plate under large deformations, Eur. J. Mech.-A Solids 77, 103801 (2019).

    Article  MathSciNet  Google Scholar 

  11. L. Qin, H. Qin, and J. T. Xing, Energy flow characteristics of friction-induced nonlinear vibrations in a water-lubricated bearing-shaft coupled system, Acta Mech. Sin. 37, 679 (2021).

    Article  MathSciNet  Google Scholar 

  12. Y. Yang, Y. Yang, D. Cao, G. Chen, and Y. Jin, Response evaluation of imbalance-rub-pedestal looseness coupling fault on a geometrically nonlinear rotor system, Mech. Syst. Signal Process. 118, 423 (2019).

    Article  Google Scholar 

  13. K. Ding, Z. Wang, X. Lu, J. Zhang, and L. Ma, Vibration investigation of rotor system with unbalance and blade-casing rubbing coupling faults, J. Vibroeng. 22, 353 (2020).

    Article  Google Scholar 

  14. C. Wang, D. Zhang, Y. Ma, Z. Liang, and J. Hong, Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off, Mech. Syst. Signal Process. 76–77, 111 (2016).

    Article  Google Scholar 

  15. H. Yuan, and H. Kou, Contact-impact analysis of a rotating geometric nonlinear plate under thermal shock, J. Eng. Math. 90, 119 (2015).

    Article  MathSciNet  Google Scholar 

  16. W. Pan, X. Li, L. Ling, and H. Qu, Dynamic modeling and response analysis of rub-impact rotor system with squeeze film damper under maneuvering load, Appl. Math. Model. 114, 544 (2023).

    Article  MathSciNet  Google Scholar 

  17. N. Zheng, M. Chen, G. Luo, and Z. Ye, Coupled lateral and torsional vibration of rub-impact rotor during hovering flight, Shock. Vib. 2021, 4077556 (2021).

    Google Scholar 

  18. W. Pan, L. Ling, H. Qu, and M. Wang, Nonlinear response analysis of aero-engine rotor bearing rub-impact system caused by horizontal yawing maneuver load, Int. J. Non-Linear Mech. 137, 103800 (2021).

    Article  Google Scholar 

  19. H. Kou, Y. Shi, J. Du, Z. Zhu, F. Zhang, F. Liang, and L. Zeng, Rub-impact dynamic analysis of a rotor with multiple wide-chord blades under the gyroscopic effect and geometric nonlinearity, Mech. Syst. Signal Process. 168, 108563 (2022).

    Article  Google Scholar 

  20. M. Legrand, A. Batailly, B. Magnain, P. Cartraud, and C. Pierre, Full three-dimensional investigation of structural contact interactions in turbomachines, J. Sound Vib. 331, 2578 (2012).

    Article  Google Scholar 

  21. S. Roques, M. Legrand, P. Cartraud, C. Stoisser, and C. Pierre, Modeling of a rotor speed transient response with radial rubbing, J. Sound Vib. 329, 527 (2010).

    Article  Google Scholar 

  22. C. Padova, J. Barton, M. G. Dunn, S. Manwaring, G. Young, M. AdamsJr., and M. Adams, Development of an experimental capability to produce controlled blade tip/shroud rubs at engine speed, J. Turbomach. 127, 726 (2005).

    Article  Google Scholar 

  23. X. Song, Y. Ren, and Q. Han, Nonlinear vibration of rotating cylindrical shell due to unilateral contact induced tip rubbing impact: Theoretical and experimental verification, Mech. Syst. Signal Process. 164, 108244 (2022).

    Article  Google Scholar 

  24. H. Kou, T. Zhang, Y. Shi, J. Du, Z. Zhu, F. Zhang, and L. Zeng, Rub-impact behaviors of a multistage bladed drum rotor under high time-varying temperature, Int. J. Mech. Sci. 234, 107692 (2022).

    Article  Google Scholar 

  25. J. Jiao, J. Xu, X. Yuan, and L. Q. Chen, Axisymmetric 3:1 internal resonance of thin-walled hyperelastic cylindrical shells under both axial and radial excitations, Acta Mech. Sin. 38, 521417 (2022).

    Article  MathSciNet  Google Scholar 

  26. X. Li, C. C. Du, and Y. H. Li, Parametric resonance of a FG cylindrical thin shell with periodic rotating angular speeds in thermal environment, Appl. Math. Model. 59, 393 (2018).

    Article  MathSciNet  Google Scholar 

  27. T. H. Quoc, D. T. Huan, and H. T. Phuong, Vibration characteristics of rotating functionally graded circular cylindrical shell with variable thickness under thermal environment, Int. J. Pressure Vessels Piping 193, 104452 (2021).

    Article  Google Scholar 

  28. P. Malekzadeh, and Y. Heydarpour, Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment, Compos. Struct. 94, 2971 (2012).

    Article  Google Scholar 

  29. Y. Heydarpour, P. Malekzadeh, M. R. Golbahar Haghighi, and M. Vaghefi, Thermoelastic analysis of rotating laminated functionally graded cylindrical shells using layerwise differential quadrature method, Acta Mech. 223, 81 (2012).

    Article  Google Scholar 

  30. N. Safaeian Hamzehkolaei, M. Miri, and M. Rashki, Reliability-based design optimization of rotating FGM cylindrical shells with temperature-dependent probabilistic frequency constraints, Aerosp. Sci. Tech. 68, 223 (2017).

    Article  Google Scholar 

  31. M. Jabbari, M. Z. Nejad, and M. Ghannad, Thermo-elastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness, Compos. Part B-Eng. 96, 20 (2016).

    Article  Google Scholar 

  32. M. Shakouri, Free vibration analysis of functionally graded rotating conical shells in thermal environment, Compos. Part B-Eng. 163, 574 (2019).

    Article  Google Scholar 

  33. R. Wang, Q. Wang, X. Guan, and W. Shao, The coupling free vibration characteristics of a rotating functionally graded shaft-disk system in thermal field, Thin-Walled Struct. 176, 109278 (2022).

    Article  Google Scholar 

  34. V. L. Nguyen, M. T. Tran, S. Limkatanyu, H. Mohammad-Sedighi, and J. Rungamornrat, Reddy’s third-order shear deformation shell theory for free vibration analysis of rotating stiffened advanced nanocomposite toroidal shell segments in thermal environments, Acta Mech. 233, 4659 (2022).

    Article  MathSciNet  Google Scholar 

  35. M. Mohammadimehr, and R. Rostami, Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocompo-site core and piezoelectric layers subjected to thermal and magnetic fields, Appl. Math. Mech.-Engl. Ed. 39, 219 (2018).

    Article  Google Scholar 

  36. Y. H. Dong, B. Zhu, Y. Wang, L. W. He, Y. H. Li, and J. Yang, Analytical prediction of the impact response of graphene reinforced spinning cylindrical shells under axial and thermal loads, Appl. Math. Model. 71, 331 (2019).

    Article  MathSciNet  Google Scholar 

  37. Z. Li, S. Hu, R. Zhong, B. Qin, and X. Zhao, Meshless chebyshev RPIM solution for free vibration of rotating cross-ply laminated combined cylindrical-conical shells in thermal environment, Materials 15, 6177 (2022).

    Article  Google Scholar 

  38. J. Chen, W. Zhang, and Y. F. Zhang, Equivalent continuum model and nonlinear breathing vibrations of rotating circular truss antenna subjected to thermal excitation, Thin-Walled Struct. 157, 107127 (2020).

    Article  Google Scholar 

  39. S. Sahoo, and B. Sreenivasan, Convection in a rapidly rotating cylindrical annulus with laterally varying boundary heat flux, J. Fluid Mech. 883, A1 (2020).

    Article  MathSciNet  Google Scholar 

  40. R. Bahaadini, and A. R. Saidi, Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment, Eur. J. Mech.-A Solids 72, 298 (2018).

    Article  MathSciNet  Google Scholar 

  41. E. R. G. Eckert, and R. M. Drake, Analysis of Heat and Mass Transfer (McGraw-Hill, New York, 1972).

    Google Scholar 

  42. A. Jeffrey, Handbook of Mathematical Formulas and Integrals, 3rd ed. (Academic Press, Burlington, 2004).

    Google Scholar 

  43. C. Padova, J. Barton, M. G. Dunn, and S. Manwaring, Experimental results from controlled blade tip/shroud rubs at engine speed, J. Turbomach. 129, 713 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 52005434), the China Scholarship Council (Grant No. 202008320145), the China Postdoctoral Science Foundation (Grant No. 2023M733151), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20190912).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Haijiang Kou contributed to conceptualization, formal analysis, funding acquisition, methodology, supervision, writing original draft, and writing review & editing. Yaowen Zhang contributed to formal analysis, methodology, validation, visualization, and writing original draft. Heow Pueh Lee supervised the research. Yuxiang Shi contributed to formal analysis. Jiaojiao Du organized the manuscript and carried out validation. Zhida Zhu, Fan Zhang, and Li Zeng provided resources.

Corresponding authors

Correspondence to Haijiang Kou  (寇海江) or Jiaojiao Du  (杜娇娇).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, H., Zhang, Y., Lee, H.P. et al. Rubbing features of the bladed drum rotor under a novel coupled axial-radial thermal effect. Acta Mech. Sin. 40, 523034 (2024). https://doi.org/10.1007/s10409-023-23034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23034-x

Navigation