Skip to main content
Log in

Does the decoration of irradiation defects induce hardening?

辐照缺陷装饰位错是否会导致硬化?

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Nano-sized irradiation defects are widely observed to aggregate and decorate the dislocation lines, which is believed to induce irradiation hardening and is mainly described by the cascade-induced source hardening model. In the current work, we demonstrate that dislocation decorated by sessile irradiation defects leads to hardening, which agrees well with the theoretical model prediction. However, no hardening or even softening is observed if the decorated irradiation defects are glissile. The reason for this observation is that the glissile irradiation loops move coordinated to the moving dislocation, and keep in the region where the interaction force between the irradiation defects and dislocation is zero. This work leads to a new understanding of irradiation defect decoration effect and irradiation hardening.

摘要

纳米尺寸的辐照缺陷常常会在位错线附近聚集, 形成装饰效应. 研究者通常采用级联诱导源硬化模型描述装饰效应引起的辐照硬化. 本研究工作发现不可动辐照缺陷装饰位错会导致辐照硬化, 硬化程度与理论模型预测一致. 然而, 当装饰辐照缺陷可动时, 则不发生辐照硬化, 甚至发生软化, 这种硬化消失是由于位错环始终处于与位错线相互作用力近似为零的区域, 并与位错线发生关联运动. 该工作带来了对辐照缺陷装饰效应和辐照硬化的新理解.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Y. R. Lin, W. Y. Chen, M. Li, J. Henry, and S. J. Zinkle, Dynamic observation of dual-beam irradiated Fe and Fe-10Cr alloys at 435 °C, Acta Mater. 209, 116793 (2021).

    Article  Google Scholar 

  2. Y. Li, L. Wang, G. Ran, Y. Yuan, L. Wu, X. Liu, X. Qiu, Z. Sun, Y. Ding, Q. Han, X. Wu, H. Deng, and X. Huang, In-situ TEM investigation of 30 keV he+ irradiated tungsten: Effects of temperature, fluence, and sample thickness on dislocation loop evolution, Acta Mater. 206, 116618 (2021).

    Article  Google Scholar 

  3. Z. Ma, G. Ran, X. Qiu, Y. Li, Y. Ding, R. Zhang, J. Huang, Y. Zhang, and X. Huang, In-situ TEM investigation of dislocation loop evolution in Al-forming austenitic stainless steels during Fe+ irradiation: Effects of irradiation dose and pre-existing dislocations, J. Nucl. Mater. 563, 153645 (2022).

    Article  Google Scholar 

  4. H. Trinkaus, B. N. Singh, and A. J. E. Foreman, Mechanisms for decoration of dislocations by small dislocation loops under cascade damage conditions, J. Nucl. Mater. 249, 91 (1997).

    Article  Google Scholar 

  5. B. N. Singh, A. J. E. Foreman, and H. Trinkaus, Radiation hardening revisited: role of intracascade clustering, J. Nucl. Mater. 249, 103 (1997).

    Article  Google Scholar 

  6. F. Bergner, M. Hernández-Mayoral, C. Heintze, M. J. Konstantinović, L. Malerba, and C. Pareige, TEM observation of loops decorating dislocations and resulting source hardening of neutron-irradiated Fe−Cr alloys, Metals 10, 147 (2020).

    Article  Google Scholar 

  7. X. Zhou, S. He, and J. Marian, Cross-kinks control screw dislocation strength in equiatomic bcc refractory alloys, Acta Mater. 211, 116875 (2021).

    Article  Google Scholar 

  8. G. Hachet, D. Caillard, L. Ventelon, and E. Clouet, Mobility of screw dislocation in BCC tungsten at high temperature in presence of carbon, Acta Mater. 222, 117440 (2022).

    Article  Google Scholar 

  9. Z. Rong, V. Mohles, D. J. Bacon, and Y. N. Osetsky, Dislocation dynamics modelling of dislocation–loop interactions in irradiated metals, Philos. Mag. 85, 171 (2005).

    Article  Google Scholar 

  10. T. A. Khraishi, H. M. Zbib, T. D. de La Rubia, and M. Victoria, Localized deformation and hardening in irradiated metals: Three-dimensional discrete dislocation dynamics simulations, Metall. Mater. Trans. B 33, 285 (2002).

    Article  Google Scholar 

  11. K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, and H. Mori, Observation of the one-dimensional diffusion of nanometer-sized dislocation loops, Science 318, 956 (2007).

    Article  Google Scholar 

  12. X. Yi, M. L. Jenkins, M. A. Kirk, Z. Zhou, and S. G. Roberts, In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: Damage production and microstructural evolution, Acta Mater. 112, 105 (2016).

    Article  Google Scholar 

  13. Z. Rong, Y. N. Osetsky, and D. J. Bacon, A model for the dynamics of loop drag by a gliding dislocation, Philos. Mag. 85, 1473 (2005).

    Article  Google Scholar 

  14. Y. Cui, G. Po, and N. Ghoniem, Does irradiation enhance or inhibit strain bursts at the submicron scale? Acta Mater. 132, 285 (2017).

    Article  Google Scholar 

  15. Y. Cui, G. Po, and N. Ghoniem, Size-tuned plastic flow localization in irradiated materials at the submicron scale, Phys. Rev. Lett. 120, 215501 (2018).

    Article  Google Scholar 

  16. C. Ji, Y. Cui, Y. Li, and N. Ghoniem, A concurrent irradiation-mechanics multiscale coupling model, J. Mech. Phys. Solids 167, 105005 (2022).

    Article  MathSciNet  Google Scholar 

  17. W. Cui, Y. Cui, and W. Liu, New insights into spatio-temporal dynamics of irradiation defects rafting, J. Nucl. Mater. 568, 153840 (2022).

    Article  Google Scholar 

  18. F. Onimus, L. Dupuy, M. Gaumé, W. Kassem, and F. Mompiou, Zirconium in the Nuclear Industry: 19th International Symposium, 2021.

  19. K. Wu, G. Liu, P. Yu, C. Ye, J. Shi, and Y. Shen, Prediction of hardening effect by irradiation-induced vacancy clusters with dislocation dynamics, Int. J. Plast. 149, 103160 (2022).

    Article  Google Scholar 

  20. W. R. Jian, S. Xu, Y. Su, and I. J. Beyerlein, Energetically favorable dislocation/nanobubble bypass mechanism in irradiation conditions, Acta Mater. 230, 117849 (2022).

    Article  Google Scholar 

  21. W. Cui, Y. Cui, and W. Liu, A statistical model of irradiation hardening induced by non-periodic irradiation defects, Scripta Mater. 201, 113959 (2021).

    Article  Google Scholar 

  22. S. J. Zinkle, and L. L. Snead, Designing radiation resistance in materials for fusion energy, Annu. Rev. Mater. Res. 44, 241 (2014).

    Article  Google Scholar 

  23. Mechanics of defects evolution library, https://github.com/giacomo-po/MoDELib.

  24. G. Po, Y. Cui, D. Rivera, D. Cereceda, T. D. Swinburne, J. Marian, and N. Ghoniem, A phenomenological dislocation mobility law for bcc metals, Acta Mater. 119, 123 (2016).

    Article  Google Scholar 

  25. M. Victoria, N. Baluc, C. Bailat, Y. Dai, M. I. Luppo, R. Schaublin, and B. N. Singh, The microstructure and associated tensile properties of irradiated fcc and bcc metals, J. Nucl. Mater. 276, 114 (2000).

    Article  Google Scholar 

  26. S. J. Zinkle, and B. N. Singh, Microstructure of neutron-irradiated iron before and after tensile deformation, J. Nucl. Mater. 351, 269 (2006).

    Article  Google Scholar 

  27. G. Bonny, D. Terentyev, J. Elena, A. Zinovev, B. Minov, and E. E. Zhurkin, Assessment of hardening due to dislocation loops in bcc iron: Overview and analysis of atomistic simulations for edge dislocations, J. Nucl. Mater. 473, 283 (2016).

    Article  Google Scholar 

  28. M. J. Makin, The long-range forces between dislocation loops and dislocations, Philos. Mag.-J. Theor. Exp. Appl. Phys. 10, 695 (1964).

    Google Scholar 

  29. M. Wen, A. Takahashi, and N. M. Ghoniem, Kinetics of self-interstitial cluster aggregation near dislocations and their influence on hardening, J. Nucl. Mater. 392, 386 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12172194, 12222205, and 51971115), and the National Key Research and Development Program of China (Grant No. 2019YFE03130003).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wei Cui Investigation, Formal Analysis, Validation, Writing–original draft. Wei Liu: Supervision, Funding acquisition, Writing–review & editing. Yinan Cui: Conceptualization, Supervision, Validation, Writing–original draft, review & editing.

Corresponding authors

Correspondence to Wei Liu  (刘伟) or Yinan Cui  (崔一南).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplemental Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Liu, W. & Cui, Y. Does the decoration of irradiation defects induce hardening?. Acta Mech. Sin. 40, 423031 (2024). https://doi.org/10.1007/s10409-023-23031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23031-x

Navigation