Skip to main content
Log in

Experimental investigation of a non-smooth quasi-zero-stiffness isolator

非光滑准零刚度隔振器实验研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Compared with traditional quasi-zero-stiffness (QZS) isolators, the QZS isolator with displacement constraints can theoretically display a lower transmissibility peak value and a wider isolation-frequency range. Nevertheless, there is no relevant experiment to prove the correctness of this theoretical result at present. In this paper, an experimental structure is built and corresponding dynamic experiments are conducted to explore the isolation characteristics of the QZS structure with displacement constraints during application. Initially, according to Hertz’s contact model, the theoretical framework of a QZS structure with displacement constraints (QZS-HCM) gets developed. Then, the QZS-HCM system is physically realized through the manufacturing and assembly of the structure. The experiments about the force-displacement relationships are conducted to validate the theoretical conclusions. Further, the dynamic experiments about the QZS-HCM system are performed to assess the isolation characteristics by investigating the displacement transmissibility and time history. Compared the experimental results of the traditional QZS structure with those of the QZS-HCM structure, it is observed that the QZS-HCM isolator can demonstrate a lower response peak and achieve a wider isolation-frequency range under the large-amplitude excitation.

摘要

理论上, 与传统准零刚度隔振器(QZS)相比, 含限位结构的准零刚度隔振器具有更低的位移传递率峰值和更宽的隔振频率范围.但是, 目前还没有相关的实验研究证明这一理论结果的正确性. 因此, 为了研究含限位准零刚度隔振器在实际应用过程中的隔振特性,本文设计制作了相应的结构, 并进行了动力学实验. 首先, 根据赫兹接触理论, 建立了含限位结构的准零刚度隔振器(QZS-HCM)动力学模型. 然后, 对隔振器的结构进行设计和加工, 制作了QZS-HCM系统, 并对系统进行静力学实验来验证理论结果的正确性. 接着, 在简谐位移激励下, 对QZS-HCM系统进行动力学测试, 通过分析系统的位移传递率和时间历程来评价系统的隔振性能. 同时, 将QZS-HCM系统与传统QZS系统的动力学测试结果进行对比, 表明QZS-HCM隔振器在大幅值位移激励下具有更低的位移响应峰值和更宽的隔振频带.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. G. Yan, H. X. Zou, S. Wang, L. C. Zhao, Z. Y. Wu, and W. M. Zhang, Bio-inspired toe-like structure for low-frequency vibration isolation, Mech. Syst. Signal Process. 162, 108010 (2022).

    Article  Google Scholar 

  2. W. Dai, J. Yang, and M. Wiercigroch, Vibration energy flow transmission in systems with Coulomb friction, Int. J. Mech. Sci. 214, 106932 (2022).

    Article  Google Scholar 

  3. E. Omidi, and S. N. Mahmoodi, Nonlinear integral resonant controller for vibration reduction in nonlinear systems, Acta Mech. Sin. 32, 925 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. A. B. Gripp, and D. A. Rade, Vibration and noise control using shunted piezoelectric transducers: A review, Mech. Syst. Signal Process. 112, 359 (2018).

    Article  Google Scholar 

  5. F. Wang, and J. Xu, Parameter design for a vibration absorber with time-delayed feedback control, Acta Mech. Sin. 35, 624 (2019).

    Article  MathSciNet  Google Scholar 

  6. X. Sun, Z. Qi, and J. Xu, A novel multi-layer isolation structure for transverse stabilization inspired by neck structure, Acta Mech. Sin. 38, 521543 (2022).

    Article  MathSciNet  Google Scholar 

  7. J. Ma, G. Chen, L. Ji, L. Qian, and S. Dong, A general methodology to establish the contact force model for complex contacting surfaces, Mech. Syst. Signal Process. 140, 106678 (2020).

    Article  Google Scholar 

  8. K. Ye, J. C. Ji, and T. Brown, Design of a quasi-zero stiffness isolation system for supporting different loads, J. Sound Vib. 471, 115198 (2020).

    Article  Google Scholar 

  9. R. A. Ibrahim, Recent advances in nonlinear passive vibration isolators, J. Sound Vib. 314, 371 (2008).

    Article  Google Scholar 

  10. A. Carrella, M. J. Brennan, T. P. Waters, and V. Lopes Jr., Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness, Int. J. Mech. Sci. 55, 22 (2012).

    Article  Google Scholar 

  11. F. Zhao, J. Ji, K. Ye, and Q. Luo, An innovative quasi-zero stiffness isolator with three pairs of oblique springs, Int. J. Mech. Sci. 192, 106093 (2021).

    Article  Google Scholar 

  12. T. Deng, G. Wen, H. Ding, Z. Q. Lu, and L. Q. Chen, A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multilayer neck, Mech. Syst. Signal Process. 145, 106967 (2020).

    Article  Google Scholar 

  13. M. Abuabiah, Y. Dabbas, L. Herzallah, I. H. Alsurakji, M. Assad, and P. Plapper, Analytical study on the low-frequency vibrations isolation system for vehicle’s seats using quasi-zero-stiffness isolator, Appl. Sci. 12, 2418 (2022).

    Article  Google Scholar 

  14. G. Gatti, Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections, Commun. Nonlinear Sci. Numer. Simul. 83, 105143 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Liu, K. Yu, B. Liao, and R. Hu, Enhanced vibration isolation performance of quasi-zero-stiffness isolator by introducing tunable nonlinear inerter, Commun. Nonlinear Sci. Numer. Simul. 95, 105654 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Chang, J. Zhou, K. Wang, and D. Xu, A quasi-zero-stiffness dynamic vibration absorber, J. Sound Vib. 494, 115859 (2021).

    Article  Google Scholar 

  17. C. Liu, and K. Yu, Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness, Nonlinear Dyn. 100, 2141 (2020).

    Article  Google Scholar 

  18. M. Shahraeeni, V. Sorokin, B. Mace, and S. Ilanko, Effect of damping nonlinearity on the dynamics and performance of a quasi-zero-stiffness vibration isolator, J. Sound Vib. 526, 116822 (2022).

    Article  Google Scholar 

  19. Q. Wang, J. X. Zhou, K. Wang, D. L. Xu, and G. L. Wen, Design and experimental study of a compact quasi-zero-stiffness isolator using wave springs, Sci. China Tech. Sci. 64, 2255 (2021).

    Article  Google Scholar 

  20. G. Dong, X. Zhang, S. Xie, B. Yan, and Y. Luo, Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring, Mech. Syst. Signal Process. 86, 188 (2017).

    Article  Google Scholar 

  21. Y. Zheng, X. Zhang, Y. Luo, Y. Zhang, and S. Xie, Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness, Mech. Syst. Signal Process. 100, 135 (2018).

    Article  Google Scholar 

  22. S. Yuan, Y. Sun, J. Zhao, K. Meng, M. Wang, H. Pu, Y. Peng, J. Luo, and S. Xie, A tunable quasi-zero stiffness isolator based on a linear electromagnetic spring, J. Sound Vib. 482, 115449 (2020).

    Article  Google Scholar 

  23. N. A. Kamaruzaman, W. S. P. Robertson, M. H. Ghayesh, B. S. Cazzolato, and A. C. Zander, Six degree of freedom quasi-zero stiffness magnetic spring with active control: Theoretical analysis of passive versus active stability for vibration isolation, J. Sound Vib. 502, 116086 (2021).

    Article  Google Scholar 

  24. K. Ye, J. C. Ji, and T. Brown, A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations, Mech. Syst. Signal Process. 149, 107340 (2021).

    Article  Google Scholar 

  25. M. Li, W. Cheng, and R. Xie, A quasi-zero-stiffness vibration isolator using a cam mechanism with user-defined profile, Int. J. Mech. Sci. 189, 105938 (2021).

    Article  Google Scholar 

  26. A. D. Shaw, S. A. Neild, D. J. Wagg, P. M. Weaver, and A. Carrella, A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation, J. Sound Vib. 332, 6265 (2013).

    Article  Google Scholar 

  27. G. Yan, H. X. Zou, S. Wang, L. C. Zhao, Q. H. Gao, T. Tan, and W. M. Zhang, Large stroke quasi-zero stiffness vibration isolator using three-link mechanism, J. Sound Vib. 478, 115344 (2020).

    Article  Google Scholar 

  28. G. Gatti, A. D. Shaw, P. J. P. Gonçalves, and M. J. Brennan, On the detailed design of a quasi-zero stiffness device to assist in the realisation of a translational Lanchester damper, Mech. Syst. Signal Process. 164, 108258 (2022).

    Article  Google Scholar 

  29. S. Dalela, P. S. Balaji, and D. P. Jena, Design of a metastructure for vibration isolation with quasi-zero-stiffness characteristics using bistable curved beam, Nonlinear Dyn. 108, 1931 (2022).

    Article  Google Scholar 

  30. S. Sadeghi, and S. Li, Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation, Smart Mater. Struct. 28, 065006 (2019).

    Article  Google Scholar 

  31. H. Han, V. Sorokin, L. Tang, and D. Cao, A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube, Nonlinear Dyn. 105, 1313 (2021).

    Article  Google Scholar 

  32. K. Ye, and J. C. Ji, An origami inspired quasi-zero stiffness vibration isolator using a novel truss-spring based stack Miura-ori structure, Mech. Syst. Signal Process. 165, 108383 (2022).

    Article  Google Scholar 

  33. J. C. Ji, Q. Luo, and K. Ye, Vibration control based metamaterials and origami structures: A state-of-the-art review, Mech. Syst. Signal Process. 161, 107945 (2021).

    Article  Google Scholar 

  34. Q. Zhang, D. Guo, and G. Hu, Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration isolation, Adv Funct Mater. 31, 2101428 (2021).

    Article  Google Scholar 

  35. T. D. Le, and K. K. Ahn, Experimental investigation of a vibration isolation system using negative stiffness structure, Int. J. Mech. Sci. 70, 99 (2013).

    Article  Google Scholar 

  36. H. Ding, J. Ji, and L. Q. Chen, Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics, Mech. Syst. Signal Process. 121, 675 (2019).

    Article  Google Scholar 

  37. J. Tuo, Z. Deng, H. Zhang, and J. Qiu, A 3-axis torsion quasi-zero-stiffness-based sensor system for angular vibration measurement, J. Vib. Control 24, 4325 (2018).

    Article  MathSciNet  Google Scholar 

  38. Q. Wang, J. Zhou, D. Xu, and H. Ouyang, Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport, Mech. Syst. Signal Process. 139, 106633 (2020).

    Article  Google Scholar 

  39. G. N. Zhu, J. Y. Liu, Q. J. Cao, Y. F. Cheng, Z. C. Lu, and Z. B. Zhu, A two degree of freedom stable quasi-zero stiffness prototype and its applications in aseismic engineering, Sci. China Tech. Sci. 63, 496 (2020).

    Article  Google Scholar 

  40. Z. Hao, Q. Cao, and M. Wiercigroch, Two-sided damping constraint control strategy for high-performance vibration isolation and end-stop impact protection, Nonlinear Dyn. 86, 2129 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Zeng, S. Yin, G. Wen, and J. Zhou, A non-smooth quasi-zero-stiffness isolator with displacement constraints, Int. J. Mech. Sci. 225, 107351 (2022).

    Article  Google Scholar 

  42. L. Serdukova, R. Kuske, and D. Yurchenko, Post-grazing dynamics of a vibro-impacting energy generator, J. Sound Vib. 492, 115811 (2021).

    Article  Google Scholar 

  43. M. Wiercigroch, S. Kovacs, S. Zhong, D. Costa, V. Vaziri, M. Kapitaniak, and E. Pavlovskaia, Versatile mass excited impact oscillator, Nonlinear Dyn. 99, 323 (2020).

    Article  Google Scholar 

  44. D. Costa, V. Vaziri, M. Kapitaniak, S. Kovacs, E. Pavlovskaia, M. A. Savi, and M. Wiercigroch, Chaos in impact oscillators not in vain: Dynamics of new mass excited oscillator, Nonlinear Dyn. 102, 835 (2020).

    Article  Google Scholar 

  45. X. F. Geng, H. Ding, X. Y. Mao, and L. Q. Chen, Nonlinear energy sink with limited vibration amplitude, Mech. Syst. Signal Process. 156, 107625 (2021).

    Article  Google Scholar 

  46. X. Sun, H. Zhang, W. Meng, R. Zhang, K. Li, and T. Peng, Primary resonance analysis and vibration suppression for the harmonically excited nonlinear suspension system using a pair of symmetric viscoelastic buffers, Nonlinear Dyn. 94, 1243 (2018).

    Article  Google Scholar 

  47. B. Blazejczyk-Okolewska, K. Czolczynski, and T. Kapitaniak, Dynamics of a two-degree-of-freedom cantilever beam with impacts, Chaos Solitons Fractals 40, 1991 (2009).

    Article  MATH  Google Scholar 

  48. B. Blazejczyk-Okolewska, K. Czolczynski, and T. Kapitaniak, The effect of discretization on the numerical simulation of the vibrations of the impacting cantilever beam, Commun. Nonlinear Sci. Numer. Simul. 15, 3073 (2010).

    Article  Google Scholar 

  49. W. Dai, and J. Yang, Vibration transmission and energy flow of impact oscillators with nonlinear motion constraints created by diamond-shaped linkage mechanism, Int. J. Mech. Sci. 194, 106212 (2021).

    Article  Google Scholar 

  50. L. Půst, and F. Peterka, Impact oscillator with Hertz’s model of contact, Meccanica 38, 99 (2003).

    Article  MATH  Google Scholar 

  51. N. D. Londhe, N. K. Arakere, and G. Subhash, Extended Hertz theory of contact mechanics for case-hardened steels with implications for bearing fatigue life, J. Tribol. 140, 1 (2018).

    Article  Google Scholar 

  52. P. A. Gourgiotis, T. Zisis, A. E. Giannakopoulos, and H. G. Georgiadis, The Hertz contact problem in couple-stress elasticity, Int. J. Solids Struct. 168, 228 (2019).

    Article  Google Scholar 

  53. O. Arslan, Hertz-type frictional contact problem of a bidirectionally graded half-plane indented by a sliding rounded punch, Mech. Mater. 149, 103539 (2020).

    Article  Google Scholar 

  54. Y. Xia, J. Pang, L. Yang, and Z. Chu, Investigation on clearance-induced vibro-impacts of torsional system based on Hertz contact nonlinearity, Mech. Mach. Theor. 162, 104342 (2021).

    Article  Google Scholar 

  55. S. L. Lau, and W. S. Zhang, Nonlinear vibrations of piecewise-linear systems by incremental harmonic balance method, J. Appl. Mech. 59, 153 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  56. S. L. Lau, Y. K. Cheung, and S. Y. Wu, A variable parameter incrementation method for dynamic instability of linear and nonlinear elastic systems, J. Appl. Mech. 49, 849 (1982).

    Article  MATH  Google Scholar 

  57. A. Carrella, M. J. Brennan, I. Kovacic, and T. P. Waters, On the force transmissibility of a vibration isolator with quasi-zero-stiffness, J. Sound Vib. 322, 707 (2009).

    Article  Google Scholar 

  58. J. J. Lou, S. J. Zhu, L. He, and Q. W. He, Experimental chaos in nonlinear vibration isolation system, Chaos Solitons Fractals 40, 1367 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11832009), and the National Natural Science Foundation of China (Grant No. 12122206).

Author information

Authors and Affiliations

Authors

Contributions

Rong Zeng: Conceptualization, Data curation, Formal analysis, Investigation, Software, Writing–original draft. Guilin Wen: Validation, Methodology, Project administration, Funding acquisition. Jiaxi Zhou: Methodology, Visualization, Software, Writing–review & editing, Funding acquisition. Shan Yin: Supervision, Conceptualization, Methodology, Software. Qiang Wang: Conceptualization, Data curation, Validation. Xin Wu: Visualization, Methodology, Supervision.

Corresponding author

Correspondence to Guilin Wen  (文桂林).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, R., Wen, G., Zhou, J. et al. Experimental investigation of a non-smooth quasi-zero-stiffness isolator. Acta Mech. Sin. 39, 522415 (2023). https://doi.org/10.1007/s10409-023-22415-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22415-x

Keywords

Navigation