Skip to main content
Log in

A class of bionic hyper-redundant robots mimicking the bird’s neck

基于鸟类脖颈结构的仿生超冗余机器人

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Some birds’ necks show excellent flexible bending ability, which can be mimicked to design bionic robot. The main challenge is how to deal with the bird neck’s inherent flexibility and redundant degrees of freedom. In this study, a design method of a class of bionic hyper-redundant robots mimicking the neck of birds is proposed, taking the chicken as an example. In our design, a bionic vertebrae unit (BVU) with the combination of springs and universal joint is first defined to simulate chicken cervical vertebrae, which is further employed to investigate the connection and motion characteristics. Then, three BVUs in parallel driven by three steel wires form a single cervical segment. Finally, connecting four identical cervical segments constitutes the proposed bionic hyper-redundant robot. The kinematics of the driving space, joint space and task space of the proposed bionic hyper-redundant robot are investigated by combing the geometric analysis method and Denavit-Hartemberg (D-H) parameter method. The reachable workspace is further computed by the Monte Carlo method. Furthermore, the maximum position deviation of the single plane motion experiment on the prototype is about 5.8% of the total length of the four cervical segments. A series of displays of space shape, including S-shaped bionic bending configuration and the successful winding and lifting of the object of interest, proves that the proposed robot has excellent flexibility and application potential and that the proposed design method is effective.

摘要

一些鸟类的脖颈具有出色的柔性弯曲能力, 模仿其特性可以设计仿生机器人. 该类仿生设计的主要挑战是如何处理鸟类脖颈固有的灵活性和冗余的自由度. 本文以鸡的脖颈结构为例, 提出了一种模仿其脖颈结构特征的仿生超冗余机器人的设计方法. 在我们的设计中, 首先研究鸡脖颈的多骨节连接与运动特性, 并定义了一个具有弹簧和万向节组合的仿生椎骨单元(BVU)来模拟鸡脖颈结构. 然后, 由三根钢丝平行驱动的三个仿生椎骨单元形成单个颈椎节段. 最后, 连接四个相同的颈椎节段构成了所提出的仿生超冗余机器人. 结合几何分析法和Denavit-Hartemberg (D-H)参数法, 研究了仿生超冗余机器人的驱动空间、关节空间和任务空间的运动学关系. 通过蒙特卡洛方法进一步计算了可达工作空间. 此外, 原型样机的单平面运动实验的最大位置偏差约为四个颈椎节段总长度的5.8%. 同时, 一系列空间形状的展示, 包括S形仿生弯曲配置和对兴趣目标体的成功缠绕和提升, 证明了所提出的设计方法的有效性、机器人具有优异的灵活性和应用潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Z. L. Zhao, S. Zhou, X. Q. Feng, and Y. M. Xie, Morphological optimization of scorpion telson, J. Mech. Phys. Solids 135, 103773 (2020).

    Article  MathSciNet  Google Scholar 

  2. X. Sun, Z. Qi, and J. Xu, A novel multi-layer isolation structure for transverse stabilization inspired by neck structure, Acta Mech. Sin. 38, 521543 (2022).

    Article  MathSciNet  Google Scholar 

  3. G. Li, X. Chen, F. Zhou, Y. Liang, Y. Xiao, X. Cao, Z. Zhang, M. Zhang, B. Wu, S. Yin, Y. Xu, H. Fan, Z. Chen, W. Song, W. Yang, B. Pan, J. Hou, W. Zou, S. He, X. Yang, G. Mao, Z. Jia, H. Zhou, T. Li, S. Qu, Z. Xu, Z. Huang, Y. Luo, T. Xie, J. Gu, S. Zhu, and W. Yang, Self-powered soft robot in the Mariana Trench, Nature 591, 66 (2021).

    Article  Google Scholar 

  4. L. Molinari, C. Falcinelli, A. Gizzi, and A. D. Martino, Biomechanical modeling of metal screw loadings on the human vertebra, Acta Mech. Sin. 37, 307 (2021).

    Article  Google Scholar 

  5. T. Bujard, F. Giorgio-Serchi, and G. D. Weymouth, A resonant squid-inspired robot unlocks biological propulsive efficiency, Sci. Robot. 6, eabd2971 (2021).

    Article  Google Scholar 

  6. I. De Falco, M. Cianchetti, and A. Menciassi, A soft multi-module manipulator with variable stiffness for minimally invasive surgery, Bioinspir. Biomim. 12, 056008 (2017).

    Article  Google Scholar 

  7. Z. Xie, A. G. Domel, N. An, C. Green, Z. Gong, T. Wang, E. M. Knubben, J. C. Weaver, K. Bertoldi, and L. Wen, Octopus arm-inspired tapered soft actuators with suckers for improved grasping, Soft Robot. 7, 639 (2020).

    Article  Google Scholar 

  8. D. Palmer, and D. Axinte, Active uncoiling and feeding of a continuum arm robot, Robot. Comput.-Integr. Manuf. 56, 107 (2019).

    Article  Google Scholar 

  9. Q. Guan, J. Sun, Y. Liu, N. M. Wereley, and J. Leng, Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk, Soft Robot. 7, 597 (2020).

    Article  Google Scholar 

  10. B. Liao, H. Zang, M. Chen, Y. Wang, X. Lang, N. Zhu, Z. Yang, and Y. Yi, Soft rod-climbing robot inspired by winding locomotion of snake, Soft Robot. 7, 500 (2020).

    Article  Google Scholar 

  11. S. Wang, Q. Zhu, R. Xiong, and J. Chu, Flexible robotic spine actuated by shape memory alloy, Int. J. Adv. Robot. Syst. 11, 56 (2014).

    Article  Google Scholar 

  12. G. D. Muir, and K. S. V. Gowri, Role of motor and visual experience during development of bipedal locomotion in chicks, J. Neurophysiol. 94, 3691 (2005).

    Article  Google Scholar 

  13. R. Necker, Head-bobbing of walking birds, J. Comp. Physiol. A 193, 1177 (2007).

    Article  Google Scholar 

  14. J. A. Nyakatura, and E. Andrada, On vision in birds: coordination of head-bobbing and gait stabilises vertical head position in quail, Front Zool 11, 27 (2014).

    Article  Google Scholar 

  15. N. F. Troje, and B. J. Frost, Head-bobbing in pigeons: how stable is the hold phase? J. Exp. Biol. 203, 935 (2000).

    Article  Google Scholar 

  16. R. Marek, P. Falkingham, R. Benson, J. Gardiner, T. Maddox, and K. Bates, Evolutionary versatility of the avian neck, P Roy Soc. B-Biol. Sci. 288, 20203150 (2021).

    Google Scholar 

  17. L. Terray, O. Plateau, A. Abourachid, C. Böhmer, A. Delapré, X. de la Bernardie, and R. Cornette, Modularity of the neck in birds (Aves), Evol. Biol. 47, 97 (2020).

    Article  Google Scholar 

  18. R. E. Kambic, A. A. Biewener, and S. E. Pierce, Experimental determination of three-dimensional cervical joint mobility in the avian neck, Front Zool 14, 37 (2017).

    Article  Google Scholar 

  19. J. Wang, W. Jia, F. Zhang, X. Ma, Z. Qiu, Z. Qian, L. Ren, Z. Guo, and Y. Zhang, Study on the Structural characteristics of bird necks and their static motion features in the sagittal plane, Coatings 11, 1228 (2021).

    Article  Google Scholar 

  20. M. J. Cobley, E. J. Rayfield, and P. M. Barrett, Inter-vertebral flexibility of the ostrich neck: Implications for estimating sauropod neck flexibility, PLoS One 8, e72187 (2013).

    Article  Google Scholar 

  21. M. Krings, J. A. Nyakatura, M. S. Fischer, and H. Wagner, The cervical spine of the American barn owl (Tyto furcata pratincola): I. Anatomy of the vertebrae and regionalization in their S-shaped arrangement, PLoS One 9, e91653 (2014).

    Article  Google Scholar 

  22. M. Krings, J. A. Nyakatura, M. L. L. M. Boumans, M. S. Fischer, and H. Wagner, Barn owls maximize head rotations by a combination of yawing and rolling in functionally diverse regions of the neck, J. Anat. 231, 12 (2017).

    Article  Google Scholar 

  23. C. Böhmer, J. Prevoteau, O. Duriez, and A. Abourachid, Gulper, ripper and scrapper: Anatomy of the neck in three species of vultures, J. Anat. 236, 701 (2020).

    Article  Google Scholar 

  24. M. Furet, A. V. Riesen, C. Christine, and P. Wenger, in Optimal design of tensegrity mechanisms used in a bird neck model: Proceedings of the 7th European Conference on Mechanism Science, Aachen, 2018, pp. 365–375.

  25. B. Fasquelle, M. Furet, C. Christine, and P. Wenger, in Dynamic modeling and control of a tensegrity manipulator mimicking a bird neck: Proceedings of the 15th IFToMM World Congress on Advances in Mechanism and Machine Science, Krakow, 2019, pp. 2087–2097.

  26. Y. Wang, Z. Li, J. He, and X. Li, Inverse kinematics based on backbone curve for a hyper-redundant tensegrity bird-neck robotic mechanism, J. Phys.-Conf. Ser. 1885, 042030 (2021).

    Article  Google Scholar 

  27. W. Qian, M. Tao, and J. Zhao, in Analysis on the configuration and simulation of a new robot composed with hybrid joints: Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics, Shenzhen, 2013, pp. 1838–1844.

  28. T. Mahl, A. Hildebrandt, and O. Sawodny, A variable curvature continuum kinematics for kinematic control of the bionic handling assistant, IEEE Trans. Robot. 30, 935 (2014).

    Article  Google Scholar 

  29. M. Cianchetti, A. Arienti, M. Follador, B. Mazzolai, P. Dario, and C. Laschi, Design concept and validation of a robotic arm inspired by the octopus, Mater. Sci. Eng.-C 31, 1230 (2011).

    Article  Google Scholar 

  30. C. Laschi, B. Mazzolai, V. Mattoli, M. Cianchetti, and P. Dario, Design of a biomimetic robotic octopus arm, Bioinspir. Biomim. 4, 015006 (2009).

    Article  Google Scholar 

  31. L. Margheri, C. Laschi, and B. Mazzolai, Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements, Bioinspir. Biomim. 7, 025004 (2012).

    Article  Google Scholar 

  32. B. Mazzolai, L. Margheri, M. Cianchetti, P. Dario, and C. Laschi, Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions, Bioinspir. Biomim. 7, 025005 (2012).

    Article  Google Scholar 

  33. Z. Mu, H. Wang, W. Xu, T. Liu, and H. Wang, Two types of snakelike robots for complex environment exploration: design, development, and experiment, Adv. Mech. Eng. 9, 168781401772185 (2017).

    Article  Google Scholar 

  34. B. Wu, L. Zeng, Y. Zheng, S. Zhang, X. Zhu, and K. Xu, in A closed-loop controller for cable-driven hyper-redundant manipulator with joint angle sensors: Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics, Dali, 2019, pp. 2433–2438.

  35. W. Xu, T. Liu, and Y. Li, Kinematics, dynamics, and control of a cable-driven hyper-redundant manipulator, IEEE ASME Trans. Mechatron. 23, 1693 (2018).

    Article  Google Scholar 

  36. T. Liu, Z. Mu, H. Wang, W. Xu, and Y. Li, A cable-driven redundant spatial manipulator with improved stiffness and load capacity: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, 2018, pp. 6628–6633.

  37. J. Peng, W. Xu, T. Yang, Z. Hu, and B. Liang, Dynamic modeling and trajectory tracking control method of segmented linkage cable-driven hyper-redundant robot, Nonlinear Dyn. 101, 233 (2020).

    Article  Google Scholar 

  38. G. Qin, A. Ji, Y. Cheng, W. Zhao, H. Pan, S. Shi, and Y. Song, A snake-inspired layer-driven continuum robot, Soft Robot. 9, 788 (2022).

    Article  Google Scholar 

  39. I. J. Lovette, and J. W. Fitzpatrick, Handbook of Bird Biology (Cornell Lab of Ornithology), 3rd ed. (Wiley-Blackwell, New Jersey, 2016), pp.169–214.

    Google Scholar 

  40. C. P. Tambussi, R. de Mendoza, F. J. Degrange, and M. B. Picasso, Flexibility along the neck of the neogene terror bird Andalgalornis steulleti (Aves Phorusrhacidae), PLoS One 7, e37701 (2012).

    Article  Google Scholar 

  41. C. Böhmer, O. Plateau, R. Cornette, and A. Abourachid, Correlated evolution of neck length and leg length in birds, R. Soc. Open Sci. 6, 181588 (2019).

    Article  Google Scholar 

  42. A. Peidró, Ó. Reinoso, A. Gil, J. M. Marín, and L. Payá, An improved monte carlo method based on gaussian growth to calculate the workspace of robots, Eng. Appl. Artif. Intell. 64, 197 (2017).

    Article  Google Scholar 

  43. J. Qian, X. Sun, J. Xu, and H. Fang, Design and dynamic analysis of a novel bio-inspired erecting structure (in Chinese), Chin. J. Theor. Appl. Mech. 53, 2023 (2021).

    Google Scholar 

  44. Q. Xu, and J. Liu, Effective enhanced model for a large deformable soft pneumatic actuator, Acta Mech. Sin. 36, 245 (2020).

    Article  MathSciNet  Google Scholar 

  45. F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi, Dynamic model of a multibending soft robot arm driven by cables, IEEE Trans. Robot. 30, 1109 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11832009, 12172095, and 11902085), and the Natural Science Foundation of Guangdong Province (Grant No. 2021A1515010320). We are also very grateful to the anonymous reviewers for their contributions.

Author information

Authors and Affiliations

Authors

Contributions

Guilin Wen designed the research. Junfeng He and Jie Liu wrote the first draft of the manuscript. Guilin Wen provided the study materials and instruments. Junfeng He set up the experiment and processed the experiment data. Guilin Wen helped organize the manuscript. Junfeng He and Jie Liu revised and edited the final version.

Corresponding author

Correspondence to Guilin Wen  (文桂林).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Wen, G. & Liu, J. A class of bionic hyper-redundant robots mimicking the bird’s neck. Acta Mech. Sin. 39, 522351 (2023). https://doi.org/10.1007/s10409-022-22351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22351-x

Navigation