Skip to main content
Log in

Lubrication theory for free-surface flows with finite slopes and fluxes

有限斜率和流量条件下自由面流动的润滑理论

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

It is known that free-surface flows with small slopes can be described by classical lubrication theory. By replacing the assumption of quasi-parallel flows with local wedge flows, the classical lubrication theory has been generalized to the situation with finite surface slopes and vanishing fluxes, e.g., steady capillary flows with moving contact lines. In this work, this theory is further extended by imposing the contribution of finite fluxes, which can be modeled by a source/sink flow in a wedge. The resulting lubrication equation is used to investigate the surface morphologies observed in dip coating of an inclined plate, including the Landau-Levich-Derjaguin film, dimple and capillary shock. Dependence of these structures on the inclination angle and relative speed with respect to the plate is discussed in detail. Numerical solutions of the lubrication equation agree well with available asymptotic theory.

摘要

众所周知, 自由面流动在小斜率情况下可以用经典润滑理论进行描述. 采用局部楔形流动代替准平行流动假设, 经典润滑理论已被推广到有限表面斜率和零流量的情况, 例如具有移动接触线的定常毛细流动. 在本工作中, 通过引入楔形中的源/汇流动对有限流量效应进行建模, 进一步扩展了润滑理论. 由此得到的润滑方程被用于研究倾斜板浸涂过程中的表面形态, 包括Landau-Levich-Derjaguin液膜、凹坑和毛细间断. 详细讨论了这些结构对平板倾角和相对平板运动速度的依赖性. 润滑方程的数值解与已有的渐近理论吻合较好.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Derjaguin, and S. M. Levi, Film Coating Theory (Focal, London, 1964).

    Google Scholar 

  2. A. Oron, S. H. Davis, and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys. 69, 931 (1997).

    Article  Google Scholar 

  3. L. M. Hocking, Sliding and spreading of thin two-dimensional drops, Q. J. Mech. Appl. Math. 34, 37 (1981).

    Article  MathSciNet  Google Scholar 

  4. H. E. Huppert, Flow and instability of a viscous current down a slope, Nature 300, 427 (1982).

    Article  Google Scholar 

  5. C. E. Wu, J. Qin, and P. Gao, Experiment on gas-liquid displacement in a capillary, Acta Mech. Sin. 38, 321386 (2022).

    Article  Google Scholar 

  6. S. Kumar, Liquid transfer in printing processes: Liquid bridges with moving contact lines, Annu. Rev. Fluid Mech. 47, 67 (2015).

    Article  MathSciNet  Google Scholar 

  7. J. H. Snoeijer, G. Delon, M. Fermigier, and B. Andreotti, Avoided critical behavior in dynamically forced wetting, Phys. Rev. Lett. 96, 174504 (2006).

    Article  Google Scholar 

  8. J. H. Snoeijer, J. Ziegler, B. Andreotti, M. Fermigier, and J. Eggers, Thick films of viscous fluid coating a plate withdrawn from a liquid reservoir, Phys. Rev. Lett. 100, 244502 (2008).

    Article  Google Scholar 

  9. J. Ziegler, J. H. Snoeijer, and J. Eggers, Film transitions of receding contact lines, Eur. Phys. J. Spec. Top. 166, 177 (2009).

    Article  Google Scholar 

  10. P. Gao, L. Li, J. J. Feng, H. Ding, and X. Y. Lu, Film deposition and transition on a partially wetting plate in dip coating, J. Fluid Mech. 791, 358 (2016).

    Article  MathSciNet  Google Scholar 

  11. Y. Bao, L. Li, L. Shen, C. Lei, and Y. Gan, Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis, Acta Mech. Sin. 35, 472 (2019), arXiv: 1804.02770.

    Article  MathSciNet  Google Scholar 

  12. L. D. Landau, and B. V. Levich, Dragging of a liquid by a moving plate, Acta Physicochim. USSR 17, 42 (1942).

    Google Scholar 

  13. B. V. Derjaguin, On the thickness of a layer of liquid remaining on the walls of vessels after their emptying, and the theory of the application of photoemulsion after coating on the cine film, Acta Physicochim. USSR 20, 349 (1943).

    Google Scholar 

  14. J. H. Snoeijer, and B. Andreotti, Moving contact lines: Scales, regimes, and dynamical transitions, Annu. Rev. Fluid Mech. 45, 269 (2013).

    Article  MathSciNet  Google Scholar 

  15. Y. Sui, H. Ding, and P. D. M. Spelt, Numerical simulations of flows with moving contact lines, Annu. Rev. Fluid Mech. 46, 97 (2014).

    Article  MathSciNet  Google Scholar 

  16. O. Reynolds, On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil, Philos. Trans. R. Soc. London 177, 157 (1886).

    Article  Google Scholar 

  17. D. J. Benney, Long waves on liquid films, J. Math. Phys. 45, 150 (1966).

    Article  MathSciNet  Google Scholar 

  18. J. Eggers, Existence of receding and advancing contact lines, Phys. Fluids 17, 082106 (2005).

    Article  MathSciNet  Google Scholar 

  19. M. Galvagno, D. Tseluiko, H. Lopez, and U. Thiele, Continuous and discontinuous dynamic unbinding transitions in drawn film flow, Phys. Rev. Lett. 112, 137803 (2014), arXiv: 1311.6994.

    Article  Google Scholar 

  20. D. Tseluiko, M. Galvagno, and U. Thiele, Collapsed heteroclinic snaking near a heteroclinic chain in dragged meniscus problems, Eur. Phys. J. E 37, 33 (2014).

    Article  Google Scholar 

  21. S. D. R. Wilson, The drag-out problem in film coating theory, J. Eng. Math. 16, 209 (1982).

    Article  MathSciNet  Google Scholar 

  22. J. H. Snoeijer, B. Andreotti, G. Delon, and M. Fermigier, Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation, J. Fluid Mech. 579, 63 (2007), arXiv: 0705.3576.

    Article  MathSciNet  Google Scholar 

  23. J. H. Snoeijer, Free-surface flows with large slopes: Beyond lubrication theory, Phys. Fluids 18, 021701 (2006), arXiv: physics/0603265.

    Article  Google Scholar 

  24. H. K. Moffatt, Viscous and resistive eddies near a sharp corner, J. Fluid Mech. 18, 1 (1964).

    Article  Google Scholar 

  25. C. Huh, and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci. 35, 85 (1971).

    Article  Google Scholar 

  26. T. S. Chan, S. Srivastava, A. Marchand, B. Andreotti, L. Biferale, F. Toschi, and J. H. Snoeijer, Hydrodynamics of air entrainment by moving contact lines, Phys. Fluids 25, 074105 (2013), arXiv: 1303.1321.

    Article  Google Scholar 

  27. T. S. Chan, C. Kamal, J. H. Snoeijer, J. E. Sprittles, and J. Eggers, Cox-Voinov theory with slip, J. Fluid Mech. 900, A8 (2020).

    Article  MathSciNet  Google Scholar 

  28. O. V. Voinov, Hydrodynamics of wetting, Fluid Dyn. 11, 714 (1976).

    Article  Google Scholar 

  29. R. G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, J. Fluid Mech. 168, 169 (1986).

    Article  Google Scholar 

  30. J. Qin, and P. Gao, Asymptotic theory of fluid entrainment in dip coating, J. Fluid Mech. 844, 1026 (2018).

    Article  MathSciNet  Google Scholar 

  31. H. K. Moffatt, Viscous and resistive eddies near a sharp corner, J. Fluid Mech. 18, 1 (1964).

    Article  Google Scholar 

  32. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967).

    MATH  Google Scholar 

  33. P. Yang, Z. X. Yang, and K. Q. Zhu, High order asymptotic solution of planar contraction flow with a slip boundary condition, Microfluid Nanofluid 4, 251 (2008).

    Article  Google Scholar 

  34. H. Gelderblom, O. Bloemen, and J. H. Snoeijer, Stokes flow near the contact line of an evaporating drop, J. Fluid Mech. 709, 69 (2012), arXiv: 1111.6752.

    Article  MathSciNet  Google Scholar 

  35. R. J. Ruschak, Coating Flows, Annu. Rev. Fluid Mech. 17, 65 (1985).

    Article  Google Scholar 

  36. Y. Xia, J. Qin, and P. Gao, Dynamical wetting transition on a chemically striped incline, Phys. Fluids 32, 022101 (2020).

    Article  Google Scholar 

  37. J. Qin, Y. T. Xia, and P. Gao, Axisymmetric evolution of gravity-driven thin films on a small sphere, J. Fluid Mech. 907, A4 (2021).

    Article  MathSciNet  Google Scholar 

  38. H. Ji, C. Falcon, A. Sadeghpour, Z. Zeng, Y. S. Ju, and A. L. Bertozzi, Dynamics of thin liquid films on vertical cylindrical fibres, J. Fluid Mech. 865, 303 (2019).

    Article  MathSciNet  Google Scholar 

  39. E. S. Benilov, S. J. Chapman, J. B. McLeod, J. R. Ockendon, and V. S. Zubkov, On liquid films on an inclined plate, J. Fluid Mech. 663, 53 (2010).

    Article  MathSciNet  Google Scholar 

  40. E. S. Benilov, and V. N. Lapin, Shock waves in Stokes flows down an inclined plate, Phys. Rev. E 83, 066321 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11972340, 11932019, and 11621202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gao  (高鹏).

Additional information

Author contributions

Peng Gao designed the research. He-Wei Du, Jian Qin, and Peng Gao wrote the first draft of the manuscript. He-Wei Du and Jian Qin performed the derivation and the calculation. Peng Gao revised and edited the final version.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, HW., Qin, J. & Gao, P. Lubrication theory for free-surface flows with finite slopes and fluxes. Acta Mech. Sin. 38, 322131 (2022). https://doi.org/10.1007/s10409-022-22131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22131-x

Navigation