Skip to main content
Log in

An adaptive smoothed particle hydrodynamics for metal cutting simulation

模拟金属切削的自适应光滑粒子流体动力法

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Normally large amounts of particles are required to accurately simulate the metal cutting process, which consumes a lot of computing time and storage. Adaptive techniques can help decrease the number of particles, hence reducing the runtime. This paper presents a novel adaptive smoothed particle hydrodynamics (SPH) method for the metal cutting simulation. The spatial resolution changes adaptively according to the distance to the tool tip by the particle splitting and merging. More particles are selected in the region where the workpiece and the tool are in contact. Since the contact region constantly changes during the cutting process, two quadrilateral frames are adopted in the adaptive algorithm to dynamically change the distribution of particles. One frame for the refinement, the other for the coarsening. These frames move at the same speed as the tool. To test the computational efficiency, the metal cutting process is simulated by using SPH with three different adaptive approaches. Numerical results show that the proposed adaptive algorithm with dynamic refinement and coarsening can significantly optimize the runtime.

摘要

准确模拟金属切削过程通常需要大量的仿真粒子, 这将耗费大量的计算时间和存储空间. 自适应技术有助于降低所需粒子的数量, 从而减少运行时间. 本文提出了一种自适应光滑粒子流体动力学方法, 用于金属切削仿真. 在模拟切削时, 定义刀具与工件接触的邻近范围作为局部关键区域, 动态分裂内部区域的粒子, 合并流出区域的粒子. 由于接触区域在切削过程中不断变化, 自适应算法采用两个四边形框架动态改变粒子的分布, 一个用于细化, 另一个用于粗化. 这些框架的移动速度与刀具相同. 为了验证计算效率, 采用三种不同的自适应方案对金属切削过程进行了模拟. 数值结果表明, 所提出的自适应算法具有动态细化和粗化功能, 能显著优化运行时间.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Lewis, and K. Ravindran, Finite element simulation of metal casting, Int. J. Numer. Meth. Eng. 47, 29 (2000).

    Article  MATH  Google Scholar 

  2. C. Agrawal, N. Khanna, M. K. Gupta, and Y. Kaynak, Sustainability assessment of in-house developed environment-friendly hybrid techniques for turning Ti-6Al-4V, Sustain. Mater. Technol. 26, e00220 (2020).

    Google Scholar 

  3. A. Chanda, A. Fischer, P. Eberhard, and S. K. Dwivedy, Stability analysis of a thin-walled cylinder in turning operation using the semi-discretization method, Acta Mech. Sin. 30, 214 (2014).

    Article  Google Scholar 

  4. P. Zhang, X. Yue, S. Han, A. Song, B. Li, and X. Yu, Experiment and simulation on the high-speed milling mechanism of aluminum alloy 7050-T7451, Vacuum 182, 109778 (2020).

    Article  Google Scholar 

  5. E. Salvati, A. J. G. Lunt, S. Ying, T. Sui, H. J. Zhang, C. Heason, G. Baxter, and A. M. Korsunsky, Eigenstrain reconstruction of residual strains in an additively manufactured and shot peened nickel superalloy compressor blade, Comput. Methods Appl. Mech. Eng. 320, 335 (2017).

    Article  Google Scholar 

  6. B. Klamecki, Incipient chip formation in metal cutting-a three dimensional finite analysis, Dissertation for the Doctoral Degree, (University of Illinois at Urbana-Chanpalgn, Urbana, 1973).

    Google Scholar 

  7. J. Kong, T. Zhang, D. Du, F. Wang, F. Jiang, and W. Huang, The development of FEM based model of orthogonal cutting for pure iron, J. Manuf. Process. 64, 674 (2021).

    Article  Google Scholar 

  8. Z. Q. Feng, F. Peyraut, and Q. C. He, Finite deformations of Ogden’s materials under impact loading, Int. J. Non-Linear Mech. 41, 575 (2006).

    Article  MATH  Google Scholar 

  9. L. Peng, Z. Q. Feng, and P. Joli, A semi-explicit algorithm for solving multibody contact dynamics with large deformation, Int. J. Non-Linear Mech. 103, 82 (2018).

    Article  Google Scholar 

  10. S. Xu, C. Wang, and X. Liu, An improved contact-impact algorithm for explicit integration FEM, Acta Mech. Sin. 18, 649 (2002).

    Article  Google Scholar 

  11. W. Niu, R. Mo, G. R. Liu, H. Sun, X. Dong, and G. Wang, Modeling of orthogonal cutting process of A2024-T351 with an improved SPH method, Int. J. Adv. Manuf. Technol. 95, 905 (2018).

    Article  Google Scholar 

  12. M. V. Le, J. Yvonnet, N. Feld, and F. Detrez, The Coarse Mesh Condensation Multiscale Method for parallel computation of heterogeneous linear structures without scale separation, Comput. Methods Appl. Mech. Eng. 363, 112877 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Xi, M. Bermingham, G. Wang, and M. Dargusch, SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy, Comput. Mater. Sci. 84, 188 (2014).

    Article  Google Scholar 

  14. P. Kunz, I. M. Zarikos, N. K. Karadimitriou, M. Huber, U. Nieken, and S. M. Hassanizadeh, Study of multi-phase flow in porous media: Comparison of SPH simulations with micro-model experiments, Transp. Porous. Media 114, 581 (2016).

    Article  Google Scholar 

  15. Q. Yang, F. Xu, Y. Yang, J. Wang, A. Wang, and C. Ma, Numerical study on the dynamic characteristics of water entry of cavity body using two-phase SPH method, Acta Mech. Sin. 37, 1072 (2021).

    Article  MathSciNet  Google Scholar 

  16. M. Robinson, M. Ramaioli, and S. Luding, Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation, Int. J. Multiphase Flow 59, 121 (2014).

    Article  Google Scholar 

  17. H. H. Bui, and G. D. Nguyen, Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: From solid fracture to granular behaviour and multiphase flows in porous media, Comput. Geotechnics 138, 104315 (2021).

    Article  Google Scholar 

  18. L. Wang, F. Xu, and Y. Yang, An improved total Lagrangian SPH method for modeling solid deformation and damage, Eng. Anal. Bound. Elem. 133, 286 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Meng, H. Frissane, L. Taddei, N. Lebaal, and S. Roth, The study on performances of kernel types in solid dynamic problems by smoothed particle hydrodynamics, Comp. Part. Mech. 8, 407 (2021).

    Article  Google Scholar 

  20. C. Zhang, M. Rezavand, and X. Hu, A multi-resolution SPH method for fluid-structure interactions, J. Comput. Phys. 429, 110028 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Khayyer, Y. Shimizu, H. Gotoh, and S. Hattori, Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering, Ocean Eng. 226, 108652 (2021).

    Article  Google Scholar 

  22. W. Hu, N. Trask, X. Hu, and W. Pan, A spatially adaptive high-order meshless method for fluid-structure interactions, Comput. Methods Appl. Mech. Eng. 355, 67 (2019), arXiv: 1902.00093.

    Article  MathSciNet  MATH  Google Scholar 

  23. X. T. Huang, P. N. Sun, H. G. Lyu, and A. M. Zhang, Numerical investigations on bionic propulsion problems using the multi-resolution Delta-plus SPH model, Eur. J. Mech.-B Fluids 95, 106 (2022).

    Article  MathSciNet  Google Scholar 

  24. Z. Ji, L. Fu, X. Y. Hu, and N. A. Adams, A new multi-resolution parallel framework for SPH, Comput. Methods Appl. Mech. Eng. 346, 1156 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  25. X. Yang, S. C. Kong, and Q. Liu, Smoothed particle hydrodynamics with adaptive spatial resolution for multiphase flows with large density ratio, Phys. Rev. E 104, 055308 (2021).

    Article  MathSciNet  Google Scholar 

  26. W. T. Liu, P. N. Sun, F. R. Ming, and A. M. Zhang, Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH, Acta Mech. Sin. 34, 601 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Vacondio, B. D. Rogers, P. K. Stansby, and P. Mignosa, Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity, Comput. Methods Appl. Mech. Eng. 300, 442 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Hu, G. Guo, X. Hu, D. Negrut, Z. Xu, and W. Pan, A consistent spatially adaptive smoothed particle hydrodynamics method for fluid-structure interactions, Comput. Methods Appl. Mech. Eng. 347, 402 (2019), arXiv: 1803.03374.

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Spreng, D. Schnabel, A. Mueller, and P. Eberhard, A local adaptive discretization algorithm for smoothed particle hydrodynamics, Comp. Part. Mech. 1, 131 (2014).

    Article  Google Scholar 

  30. R. Vacondio, B. D. Rogers, P. K. Stansby, P. Mignosa, and J. Feldman, Variable resolution for SPH: A dynamic particle coalescing and splitting scheme, Comput. Methods Appl. Mech. Eng. 256, 132 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Spreng and P. Eberhard, Modeling of orthogonal metal cutting using adaptive smoothed particle hydrodynamics, Therm. Effects Complex Machin. Process. 133 (2018).

  32. M. Afrasiabi, M. Roethlin, H. Klippel, and K. Wegener, Meshfree simulation of metal cutting: An updated Lagrangian approach with dynamic refinement, Int. J. Mech. Sci. 160, 451 (2019).

    Article  Google Scholar 

  33. S. P. F. C. Jaspers, and J. H. Dautzenberg, Material behaviour in metal cutting: Strains, strain rates and temperatures in chip formation, J. Mater. Process. Tech. 121, 123 (2002).

    Article  Google Scholar 

  34. P. Jiang, and M. Liu, Improved ray method to judge the relation of point and polygon including simple curve, Sci. Surv. Mapp. 34, 220 (2009).

    Google Scholar 

  35. G. Li, and T. Belytschko, Element-free Galerkin method for contact problems in metal forming analysis, Eng. Comput. 18, 62 (2001).

    Article  MATH  Google Scholar 

  36. G. Taylor, and H. Quinney, The latent energy remaining in a metal after cold working, Proc. Royal Soc. London A 143, 307 (1934).

    Google Scholar 

  37. G. Jaumann, Geschlosssenes system physikalischer und chemischer differential gesetze, Akad. Wiss. Wien Sitzber 120, 385 (1911).

    MATH  Google Scholar 

  38. M. Sima, and T. Özel, Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V, Int. J. Machine Tools Manuf. 50, 943 (2010).

    Article  Google Scholar 

  39. L. Lucy, A numerical approach to the testing of the fission hypothesis, Astrophysical J. 8, 1013 (1977).

    Google Scholar 

  40. R. A. Gingold, and J. J. Monaghan, Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Mon. Not. R. Astron. Soc. 181, 375 (1977).

    Article  MATH  Google Scholar 

  41. G. Liu and M. Liu, Smoothed Particle Hydrodynamics, (World Scientific, xx, 2003).

  42. S. Li, and W. K. Liu, Meshfree and particle methods and their applications, Appl. Mech. Rev. 55, 1 (2002).

    Article  Google Scholar 

  43. J. J. Monaghan, and R. A. Gingold, Shock simulation by the particle method SPH, J. Comput. Phys. 52, 374 (1983).

    Article  MATH  Google Scholar 

  44. J. P. Gray, J. J. Monaghan, and R. P. Swift, SPH elastic dynamics, Comput. Methods Appl. Mech. Eng. 190, 6641 (2001).

    Article  MATH  Google Scholar 

  45. M. Röthlin, H. Klippel, M. Afrasiabi, and K. Wegener, Metal cutting simulations using smoothed particle hydrodynamics on the GPU, Int. J. Adv. Manuf. Technol. 102, 3445 (2019).

    Article  Google Scholar 

  46. J. J. Monaghan, On the problem of penetration in particle methods, J. Comput. Phys. 82, 1 (1989).

    Article  MATH  Google Scholar 

  47. R. Hockney, and J. Eastwood, Computer Simulation Using Particles, (Hilger, Bristol, 1988).

    Book  MATH  Google Scholar 

  48. S. E. Oraby, and D. R. Hayhurst, Development of models for tool wear force relationships in metal cutting, Int. J. Mech. Sci. 33, 125 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12002290 and 11772274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li  (李燕).

Additional information

Author contributions

YiJin Cheng designed the research, performed the simulation, processed the data and wrote the first draft of the manuscript. Yan Li and Zhi-Qiang Feng acquired the financial support for the project leading to this publication and oversighted and leadership responsibility for the research activity planning and execution. Yan Li, Ling Tao, Pierre Joli and Zhi-Qiang Feng helped check the manuscript. YiJin Cheng revised and edited the final version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Li, Y., Tao, L. et al. An adaptive smoothed particle hydrodynamics for metal cutting simulation. Acta Mech. Sin. 38, 422126 (2022). https://doi.org/10.1007/s10409-022-22126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22126-x

Keywords

Navigation