Skip to main content
Log in

A ground-limited nonlinear energy sink

接地限幅型非线性能量汇

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The nonlinear energy sink (NES) is outstanding in vibration control for the well-known character of energy targeted transmitting and resonance automatically capturing. To enhance the practicability, this paper proposes a ground-limited NES. The novel design can be encapsulated in a certain box. However, as the vibration region of NES is limited, the control efficiency of it must be considered seriously. Hence, the ground-limited NES is discussed via the analytical method, the simulation method, and especially the experiment in forced vibration. All parameters involved in this study are obtained through the parameter identification based on the experimental platform. The piecewise nonlinearity is fitted into the continuous nonlinearity by the hyperbolic tangent function. Then the harmonic balance method (HBM) is used during the analytical processing to promote the accuracy of the solution. The direct numerical method produces results to verify the analytical method together with the experimental records. The discussion on the control parameters shows that a proper limiting spring can effectively reduce the vibration of the NES while the cost of the control efficiency is small. In a word, this work provides a simple and reliable approach for restricting the NES, which is beneficial to the design of the NES and broadens the application of the NES in engineering.

摘要

非线性能量汇(NES)以能量定向传输和共振自动捕获的特性在被动振动控制方面表现突出. 为了提高实用性, 本文提出了一种接地限幅型NES. 该设计可以封装在一个盒子里. 然而, 由于NES的振动区域有限, 需要考虑其控制效率. 因此, 通过近似解析方法、 数值仿真方法, 特别是强迫振动实验, 研究接地限幅型NES的动力学特性. 本研究中涉及的所有参数均通过基于实验平台的参数辨识得到. 通过双曲正切函数将分段非线性拟合成连续非线性. 然后在分析处理过程中使用谐波平衡法(HBM)来提高解的准确性. 直接数值方法产生的结果与实验记录一起验证了解析方法. 对控制参数的分析表明, 适当的限位弹簧可以有效地降低NES的振动, 同时控制效率的代价很小. 总之, 这项工作为NES的约束提供了一种简单可靠的方法, 有利于NES的设计, 拓宽了NES在工程中的应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. H. He, Y. Z. Wang, and Y. S. Wang, Active feedback control of sound radiation in elastic wave metamaterials immersed in water with fluid-solid coupling, Acta Mech. Sin. 37, 803 (2021).

    Article  MathSciNet  Google Scholar 

  2. P. Zhao, K. Zhang, C. Zhao, and Z. Deng, Multi-resonator coupled metamaterials for broadband vibration suppression, Appl. Math. Mech.-Engl. Ed. 42, 53 (2021).

    Article  MathSciNet  Google Scholar 

  3. J. C. Ji, Design of a nonlinear vibration absorber using three-to-one internal resonances, Mech. Syst. Signal Process. 42, 236 (2014).

    Article  Google Scholar 

  4. X. Geng, H. Ding, K. Wei, and L. Chen, Suppression of multiple modal resonances of a cantilever beam by an impact damper, Appl. Math. Mech.-Engl. Ed. 41, 383 (2020).

    Article  MathSciNet  Google Scholar 

  5. F. Xie, and A. M. Aly, Structural control and vibration issues in wind turbines: a review, Eng. Struct. 210, 110087 (2020).

    Article  Google Scholar 

  6. J. C. Ji, and N. Zhang, Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber, J. Sound Vib. 329, 2044 (2010).

    Article  Google Scholar 

  7. X. Shui, and S. Wang, Investigation on a mechanical vibration absorber with tunable piecewise-linear stiffness, Mech. Syst. Signal Process. 100, 330 (2018).

    Article  Google Scholar 

  8. K. Wang, J. Zhou, C. Cai, D. Xu, S. Xia, and G. Wen, Bidirectional deep-subwavelength band gap induced by negative stiffness, J. Sound Vib. 515, 116474 (2021).

    Article  Google Scholar 

  9. M. Farid, and O. V. Gendelman, Response regimes in equivalent mechanical model of moderately nonlinear liquid sloshing, Nonlinear Dyn. 92, 1517 (2018).

    Article  Google Scholar 

  10. Z. N. Ahmadabadi, Nonlinear energy transfer from an engine crankshaft to an essentially nonlinear attachment, J. Sound Vib. 443, 139 (2019).

    Article  Google Scholar 

  11. A. F. Vakakis, Inducing passive nonlinear energy sinks in vibrating systems, J. Vib. Acoustics 123, 324 (2001).

    Article  Google Scholar 

  12. H. Ding, and L. Q. Chen, Designs, analysis, and applications of nonlinear energy sinks, Nonlinear Dyn. 100, 3061 (2020).

    Article  Google Scholar 

  13. G. G. Tehrani, and M. Dardel, Vibration mitigation of a flexible bladed rotor dynamic system with passive dynamic absorbers, Commun. Nonlinear Sci. Numer. Simul. 69, 1 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Wang, B. Wang, N. E. Wierschem, and B. F. Spencer Jr, Dynamic analysis of track nonlinear energy sinks subjected to simple and stochastice excitations, Earthq. Eng. Struct. Dyn. 49, 863 (2020).

    Article  Google Scholar 

  15. C. Snoun, B. Bergeot, and S. Berger, Prediction of the dynamic behavior of an uncertain friction system coupled to nonlinear energy sinks using a multi-element generalized polynomial chaos approach, Eur. J. Mech.-A Solids 80, 103917 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Li, N. E. Wierschem, X. Li, T. Yang, and M. J. Brennan, Numerical study of a single-sided vibro-impact track nonlinear energy sink considering horizontal and vertical dynamics, J. Vib. Acoustics 141, 061013 (2019).

    Article  Google Scholar 

  17. J. Shao, T. Zeng, X. Wu, and J. Yang, Influence of the pre-stress of the nonlinear membrane absorber for targeted energy transfer applied to 3D acoustic cavity, J. Braz. Soc. Mech. Sci. Eng. 42, 557 (2020).

    Article  Google Scholar 

  18. P. Y. Bryk, R. Côte, and S. Bellizzi, Targeted energy transfer from a resonant room to a hybrid electro-acoustic nonlinear membrane absorber: Numerical and experimental study, J. Sound Vib. 460, 114868 (2019).

    Article  Google Scholar 

  19. G. C. Tsiatas, and D. A. Karatzia, Reliability analysis of the hysteretic nonlinear energy sink in shock mitigation considering uncertainties, J. Vib. Control 26, 2261 (2020).

    Article  MathSciNet  Google Scholar 

  20. P. Kumar, S. Narayanan, and S. Gupta, Targeted energy transfer in stochastically excited system with nonlinear energy sink, Eur. J. Appl. Math. 30, 869 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  21. C. E. Silva, A. Maghareh, H. Tao, S. J. Dyke, and J. Gibert, Evaluation of energy and power flow in a nonlinear energy sink attached to a linear primary oscillator, J. Vib. Acoustics 141, 061012 (2019).

    Article  Google Scholar 

  22. K. Dekemele, P. Van Torre, and M. Loccufier, Design, construction and experimental performance of a nonlinear energy sink in mitigating multi-modal vibrations, J. Sound Vib. 473, 115243 (2020).

    Article  Google Scholar 

  23. T. Li, E. Gourc, S. Seguy, and A. Berlioz, Dynamics of two vibroimpact nonlinear energy sinks in parallel under periodic and transient excitations, Int. J. Non-Linear Mech. 90, 100 (2017).

    Article  Google Scholar 

  24. D. Bitar, A. Ture Savadkoohi, C. H. Lamarque, E. Gourdon, and M. Collet, Extended complexification method to study nonlinear passive control, Nonlinear Dyn. 99, 1433 (2020).

    Article  MATH  Google Scholar 

  25. J. Chen, W. Zhang, J. Liu, and W. Hu, Vibration absorption of parallel-coupled nonlinear energy sink under shock and harmonic excitations, Appl. Math. Mech.-Engl. Ed. 42, 1135 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Oliva, G. Barone, F. Lo Iacono, and G. Navarra, Nonlinear energy sink and Eurocode 8: An optimal design approach based on elastic response spectra, Eng. Struct. 221, 111020 (2020).

    Article  Google Scholar 

  27. J. Xue, Y. Zhang, H. Ding, and L. Chen, Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation, Appl. Math. Mech.-Engl. Ed. 41, 1 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. A. Al-Shudeifat, and A. S. Saeed, Comparison of a modified vibro-impact nonlinear energy sink with other kinds of NESs, Meccanica 56, 735 (2021).

    Article  MathSciNet  Google Scholar 

  29. D. Huang, R. Li, and G. Yang, On the dynamic response regimes of a viscoelastic isolation system integrated with a nonlinear energy sink, Commun. Nonlinear Sci. Numer. Simul. 79, 104916 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  30. K. Foroutan, A. Jalali, and H. Ahmadi, Investigations of energy absorption using tuned bistable nonlinear energy sink with local and global potentials, J. Sound Vib. 447, 155 (2019).

    Article  Google Scholar 

  31. V. Iurasov, and P. O. Mattei, Bistable nonlinear damper based on a buckled beam configuration, Nonlinear Dyn. 99, 1801 (2020).

    Article  Google Scholar 

  32. M. A. Al-Shudeifat, Nonlinear energy sinks with nontraditional kinds of nonlinear restoring forces, J. Vib. Acoustics 139, 024503 (2017).

    Article  Google Scholar 

  33. X. Lu, Z. Liu, and Z. Lu, Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation, Struct. Control Health Monit. 24, e2033 (2017).

    Article  Google Scholar 

  34. S. Bellizzi, K. W. Chung, and R. Sampaio, Response regimes of a linear oscillator with a nonlinear energy sink involving an active damper with delay, Nonlinear Dyn. 97, 1667 (2019).

    Article  MATH  Google Scholar 

  35. S. Lo Feudo, C. Touzé, J. Boisson, and G. Cumunel, Nonlinear magnetic vibration absorber for passive control of a multi-storey structure, J. Sound Vib. 438, 33 (2019).

    Article  Google Scholar 

  36. Z. Zhang, H. Ding, Y. W. Zhang, and L. Q. Chen, Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks, Acta Mech. Sin. 37, 387 (2021).

    Article  MathSciNet  Google Scholar 

  37. J. E. Chen, W. Zhang, M. H. Yao, J. Liu, and M. Sun, Thermal effect on dynamics of beam with variable-stiffness nonlinear energy sink, Int. J. Nonlinear Sci. Numer. Simul. 21, 1 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  38. H. Yao, Y. Wang, L. Xie, and B. Wen, Bi-stable buckled beam nonlinear energy sink applied to rotor system, Mech. Syst. Signal Process. 138, 106546 (2020).

    Article  Google Scholar 

  39. S. Bab, S. E. Khadem, M. Shahgholi, and A. Abbasi, Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks, Mech. Syst. Signal Process. 84, 128 (2017).

    Article  Google Scholar 

  40. D. Wang, Z. Hao, F. Chen, and Y. Chen, Nonlinear energy harvesting with dual resonant zones based on rotating system, Appl. Math. Mech.-Engl. Ed. 42, 275 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  41. X. Y. Mao, H. Ding, and L. Q. Chen, Bending vibration control of pipes conveying fluids by nonlinear torsional absorbers at the boundary, Sci. China Tech. Sci. 64, 1690 (2021).

    Article  Google Scholar 

  42. W. Zhang, and J. Chen, Influence of geometric nonlinearity of rectangular plate on vibration reduction performance of nonlinear energy sink, J. Mech. Sci. Technol. 34, 3127 (2020).

    Article  Google Scholar 

  43. H. Y. Chen, X. Y. Mao, H. Ding, and L. Q. Chen, Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks, Mech. Syst. Signal Process. 135, 106383 (2020).

    Article  Google Scholar 

  44. W. Tian, Y. Li, Z. Yang, P. Li, and T. Zhao, Suppression of nonlinear aeroelastic responses for a cantilevered trapezoidal plate in hypersonic airflow using an energy harvester enhanced nonlinear energy sink, Int. J. Mech. Sci. 172, 105417 (2020).

    Article  Google Scholar 

  45. J. Zhou, M. Xu, and W. Xia, Passive suppression of panel flutter using a nonlinear energy sink, Int. J. Aerosp. Eng. 2020, 1 (2020).

    Google Scholar 

  46. Z. Yan, S. A. Ragab, and M. R. Hajj, Passive control of transonic flutter with a nonlinear energy sink, Nonlinear Dyn. 91, 577 (2018).

    Article  Google Scholar 

  47. W. Tian, Y. Li, P. Li, Z. Yang, and T. Zhao, Passive control of nonlinear aeroelasticity in hypersonic 3-D wing with a nonlinear energy sink, J. Sound Vib. 462, 114942 (2019).

    Article  Google Scholar 

  48. Y. W. Zhang, Y. N. Lu, and L. Q. Chen, Energy harvesting via nonlinear energy sink for whole-spacecraft, Sci. China Tech. Sci. 62, 1483 (2019).

    Article  Google Scholar 

  49. X. F. Geng, H. Ding, X. Y. Mao, and L. Q. Chen, Nonlinear energy sink with limited vibration amplitude, Mech. Syst. Signal Process. 156, 107625 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding  (丁虎).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11772181) and the National Science Fund for Distinguished Young Scholars (Grant No. 12025204).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, XF., Ding, H., Mao, XY. et al. A ground-limited nonlinear energy sink. Acta Mech. Sin. 38, 521558 (2022). https://doi.org/10.1007/s10409-022-09027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-09027-x

Keywords

Navigation