Skip to main content
Log in

A newly developed interatomic potential of Nb−Al−Ti ternary systems for high-temperature applications

适于高温应用的Nb−Al−Ti三元系新原子间势场

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Nb-doped TiAl alloys exhibit excellent mechanical properties at high temperatures, and the underlying mechanism and optimal doping amount remain elusive. Molecular dynamics simulation is helpful to clarify these problems, but most of the existing interatomic potentials are limited to the Ti−Al binary system and lack interatomic potentials for doped alloys. Here, an interatomic potential of Nb−Al−Ti ternary systems based on the modified embedded-atom method was developed. The ternary potential can accurately predict the structure and thermodynamic properties of the Nb−Al−Ti system. The potential shows that the optimal Nb content for high-temperature strength-ductility synergy of TiAl single crystals is 8%, consistent with the amount of miracle synthesis of TiAl single crystals. Tensile simulations further show that the developed potential can make an effective prediction at high temperatures, indicating the potential for the development and applications of high-temperature Nb−Al−Ti ternary systems.

摘要

铌(Nb)掺杂的TiAl合金在高温下具有优异的力学性能, 但其机理和最佳掺杂量尚不清楚. 分子动力学模拟有助于澄清这些问题, 但现有的原子间势场大多局限于Ti−Al二元体系, 缺乏适用于掺杂合金的原子间势场. 文章基于改进的嵌入原子法, 建立了Nb−Al−Ti三元系的原子间势场. 三元势能很好地预测Nb−Al−Ti体系的结构及其热力学性质. 电位分析表明, TiAl单晶高温强塑性协同效应的最佳Nb含量为8%, 与TiAl单晶的合成量一致. 拉伸模拟进一步表明本文所发展的电位可以有效预测材料在高温下的力学性能, 显示了高温Nb−Al−Ti三元系的发展和应用潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Appel, H. Clemens, and F. D. Fischer, Modeling concepts for intermetallic titanium aluminides, Prog. Mater. Sci. 81, 55 (2016).

    Article  Google Scholar 

  2. H. F. Appel, J. D. H. Paul, and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH Verlag GmbH & Co. KGaA, 2011).

  3. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  4. D. Chen, M. Yan, and Y. F. Liu, A modified embedded-atom potential for L10 γ-TiAl, Scripta Mater. 40, 913 (1999).

    Article  Google Scholar 

  5. G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong, and C. T. Liu, Polysynthetic twinned TiAl single crystals for high-temperature applications, Nat. Mater. 15, 876 (2016).

    Article  Google Scholar 

  6. W. M. Choi, Y. H. Jo, S. S. Sohn, S. Lee, and B. J. Lee, Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study, npj Comput. Mater. 4, 1 (2018).

    Article  Google Scholar 

  7. S. F. Clark, 787 Propulsion System (Boeing, 2012), http://go.nature.com/29oA2VJ.

  8. D. Faken, and H. Jónsson, Systematic analysis of local atomic structure combined with 3D computer graphics, Comput. Mater. Sci. 2, 279 (1994).

    Article  Google Scholar 

  9. D. Farkas, Interatomic potentials for Ti−Al with and without angular forces, Model. Simul. Mater. Sci. Eng. 2, 975 (1994).

    Article  Google Scholar 

  10. D. Farkas, and C. Jones, Interatomic potentials for ternary Nb−Ti−Al alloys, Model. Simul. Mater. Sci. Eng. 4, 23 (1999).

    Article  Google Scholar 

  11. B. H. Kear, and E. R. Thompson, Aircraft gas turbine materials and processes, Science 208, 847 (1980).

    Article  Google Scholar 

  12. J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond, J. Comput. Chem. 29, 2044 (2008).

    Article  Google Scholar 

  13. X. Huang, L. Liu, X. Duan, W. Liao, J. Huang, H. Sun, and C. Yu, Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential, Mater. Des. 202, 109560 (2021).

    Article  Google Scholar 

  14. M. S. Kesler, S. Goyel, F. Ebrahimi, and M. V. Manuel, Effect of microstructural parameters on the mechanical behavior of TiAlNb(Cr, Mo) alloys with γ+σ microstructure at ambient temperature, J. Alloys Compd. 695, 2672 (2017).

    Article  Google Scholar 

  15. H. K. Kim, W. S. Jung, and B. J. Lee, Modified embedded-atom method interatomic potentials for the Fe−Ti−C and Fe−Ti−N ternary systems, Acta Mater. 57, 3140 (2009).

    Article  Google Scholar 

  16. Y. K. Kim, W. S. Jung, and B. J. Lee, Modified embedded-atom method interatomic potentials for the Ni−Co binary and the Ni−Al−Co ternary systems, Model. Simul. Mater. Sci. Eng. 23, 055004 (2015).

    Article  Google Scholar 

  17. Y. K. Kim, H. K. Kim, W. S. Jung, and B. J. Lee, Atomistic modeling of the Ti−Al binary system, Comput. Mater. Sci. 119, 1 (2016).

    Article  Google Scholar 

  18. Y. K. Kim, H. K. Kim, W. S. Jung, and B. J. Lee, Development and application of Ni−Ti and Ni−Al−Ti 2NN-MEAM interatomic potentials for Ni-base superalloys, Comput. Mater. Sci. 139, 225 (2017).

    Article  Google Scholar 

  19. Y. M. Kim, B. J. Lee, and M. Baskes, Modified embedded-atom method interatomic potentials for Ti and Zr, Phys. Rev. B 74, 014101, (2006).

    Article  Google Scholar 

  20. K. Kishida, H. Inui, and M. Yamaguchi, Deformation of lamellar structure in TiAl−Ti3Al two-phase alloys, Philos. Mag. A 78, 1 (1998).

    Article  Google Scholar 

  21. W. S. Ko, and B. J. Lee, Modified embedded-atom method interatomic potentials for pure Y and the V-Pd-Y ternary system, Model. Simul. Mater. Sci. Eng. 21, 085008 (2013).

    Article  Google Scholar 

  22. A. Lasalmonie, Intermetallics: Why is it so difficult to introduce them in gas turbine engines? Intermetallics 14, 1123, (2006).

    Article  Google Scholar 

  23. B. J. Lee, M. Baskes, H. Kim, and Y. K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys. Rev. B 64, 184102, (2001).

    Article  Google Scholar 

  24. B. J. Lee, J. H. Shim, and M. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B 68, 144112, (2003).

    Article  Google Scholar 

  25. B. J. Lee, and M. I. Baskes, Second nearest-neighbor modified embedded-atom-method potential, Phys. Rev. B 62, 8564 (2000).

    Article  Google Scholar 

  26. C. T. Liu, and J. O. Stiegler, Ductile ordered intermetallic alloys, Science 226, 636 (1984).

    Article  Google Scholar 

  27. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  28. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  29. T. M. Pollock, Alloy design for aircraft engines, Nat. Mater 15, 809 (2016).

    Article  Google Scholar 

  30. J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Universal features of the equation of state of metals, Phys. Rev. B 29, 2963 (1984).

    Article  Google Scholar 

  31. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  32. X. Wu, Review of alloy and process development of TiAl alloys, Intermetallics 14, 1114 (2006).

    Article  Google Scholar 

  33. X. Wu, S. K. Makineni, C. H. Liebscher, G. Dehm, J. Rezaei Mianroodi, P. Shanthraj, B. Svendsen, D. Bürger, G. Eggeler, D. Raabe, and B. Gault, Unveiling the Re effect in Ni-based single crystal superalloys, Nat. Commun. 11, 389 (2020).

    Article  Google Scholar 

  34. M. Yoshihara, and K. Miura, Effects of Nb addition on oxidation behavior of TiAl, Intermetallics 3, 357 (1995).

    Article  Google Scholar 

  35. S. Znam, D. Nguyen-Manh, D. G. Pettifor, and V. Vitek, Atomistic modelling of TiAl I. Bond-order potentials with environmental dependence, Philos. Mag. 83, 415 (2003).

    Article  Google Scholar 

  36. R. R. Zope, and Y. Mishin, Interatomic potentials for atomistic simulations of the Ti-Al system, Phys. Rev. B 68, 024102 (2003).

    Article  Google Scholar 

  37. Y. Chen, Y. Cao, Z. Qi, and G. Chen, Increasing high-temperature fatigue resistance of polysynthetic twinned TiAl single crystal by plastic strain delocalization, J. Mater. Sci. Tech. 93, 53 (2021).

    Article  Google Scholar 

  38. D. P. Wang, Z. X. Qi, H. T. Zhang, G. Chen, Y. Lu, B. A. Sun, and C. T. Liu, Microscale mechanical properties of ultra-high-strength polysynthetic TiAl−Ti 3 Al single crystals, Mater. Sci. Eng.-A 732, 14 (2018).

    Article  Google Scholar 

  39. H. G. Xiang, and W. L. Guo, Post-yielding dislocation retraction of nano-lamellar TiAl single crystals, Sci. China-Phys. Mech. Astron. 64, 264611 (2021).

    Article  Google Scholar 

  40. S. Yan, Z. Qi, Y. Chen, Y. Cao, J. Zhang, G. Zheng, F. Chen, T. Bian, and G. Chen, Interlamellar boundaries govern cracking, Acta Mater. 215, 117091 (2021).

    Article  Google Scholar 

  41. B. Yang, K. Tong, C. Huang, Z. Qi, D. Yin, Q. Wei, Z. Zhao, X. Peng, and N. Hu, Strengthening effects of penetrating twin boundary and phase boundary in polycrystalline diamond, Diamond Relat. Mater. 117, 108436 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Guo  (郭万林).

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2019YFA0705400), National Natural Science Foundation of China (Grant Nos. 51535005, 51731006, and 51771093), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Grant Nos. MCMS-I-0418K01, MCMS-I-0419K01), the Fundamental Research Funds for the Central Universities (Grant Nos. NZ2020001, NC2018001, NP2019301, NJ2019002, and 30919011295), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, H., Guo, W. A newly developed interatomic potential of Nb−Al−Ti ternary systems for high-temperature applications. Acta Mech. Sin. 38, 121451 (2022). https://doi.org/10.1007/s10409-022-09007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-09007-x

Keywords

Navigation