Skip to main content
Log in

On the effectiveness of local vortex identification criteria in the vortex representation of wall-bounded turbulence

旋涡识别准则在壁湍流涡表征方面的有效性比较

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Compressing complex flows into a tangle of vortex filaments is the basic implication of the classical vortex-representation notion. This work focuses on the effectiveness of the local identification criteria in the vortex representation of wall-bounded turbulence. Basically, five local identification criteria regarding vortex strength and three criteria for vortex axis are considered. Instead of separately evaluating the two classes of criteria, the current work defines vortex vectors by arbitrarily combining the vortex strength and vortex axis expressed by various criteria, and attempts to figure out the most effective one regarding the vortex representation. The effectiveness of these vortex vectors is evaluated based on two aspects: first, the alignment of the vortex axis and vortex iso-surface should be well established, which benefits the simplification of the vortex filaments; second, vortices could be viewed as the “gene code” of turbulent flows, which means reconstructing the velocity fields based on them should be effective. For the first aspect, the differential geometry method is employed to describe the vortex isosurface-axis alignment property quantitatively. For the second aspect, the Biot-Savart law is employed to accomplish the vortex-to-velocity reconstruction. Results of this work provide some reference for the applications of vortex identification criteria in wall-bounded turbulence.

摘要

将复杂、多尺度的流动表示为丝状旋涡结构的诱导作用是经典旋涡表征观点的基本内容. 本文主要研究不同旋涡识别准则在 壁湍流旋涡表征方面的有效性. 主要考察五个关于旋涡强度的识别准则以及三个关于涡轴方向的识别准则, 通过任意组合这两类旋涡 识别准则定义不同版本的旋涡矢量, 然后从两个方面对这些旋涡矢量的有效性进行了评估. 首先, 涡轴方向与旋涡等值面伸展的方向 应具有一致性, 这是丝状旋涡结构的特点;其次, 旋涡是湍流的“基因密码”, 这意味着基于它们重建速度场是有效的. 对于第一个方 面, 采用微分几何方法定量地描述涡轴与旋涡等值面的关联性. 对于第二个方面, 采用毕奥-萨伐尔定律来实现旋涡到速度场的重建. 本文的研究结果对壁湍流旋涡识别和表征方面的工作具有一定的参考意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, W. Huang, and C. Xu, On hairpin vortex generation from near-wall streamwise vortices. Acta Mech. Sin. 31, 139 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  2. Z. Q. Tang, N. Jiang, A. Schröder, and R. Geisler, Tomographic PIV investigation of coherent structures in a turbulent boundary layer flow. Acta Mech. Sin. 28, 572 (2012).

    Article  Google Scholar 

  3. L. M. Lin, S. Y. Shi, X. F. Zhong, and Y. X. Wu, Mechanism of wavy vortex and sign laws in flow past a bluff body: Vortex-induced vortex. Acta Mech. Sin. 35, 1 (2019).

    Article  MathSciNet  Google Scholar 

  4. Q. Liu, Z. Luo, X. Deng, Y. Zhou, L. Wang, and P. Cheng, Vortical structures and density fluctuations analysis of supersonic forward-facing step controlled by self-sustaining dual synthetic jets. Acta Mech. Sin. 36, 1215 (2020).

    Article  Google Scholar 

  5. H. J. Lugt, Vortex Flow in Nature and Technolog. (New York, 1983).

  6. C.-Q. Liu, Y.-H. Yan, and P. Lu, Physics of turbulence generation and sustenance in a boundary layer. Comput. Fluids 102, 353 (2014).

    Article  Google Scholar 

  7. A. E. Perry, and M. S. Chong, A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19, 125 (1987).

    Article  Google Scholar 

  8. P. Chakraborty, S. Balachandar, and R. J. Adrian, On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Kolář, Vortex identification: New requirements and limitations. Int. J. Heat Fluid Flow 28, 638 (2007).

    Article  Google Scholar 

  10. B. Epps, Review of vortex identification methods. in: 55th AIAA Aerospace Sciences Meeting, 0989 (2017).

  11. M. S. Chong, A. E. Perry, and B. J. Cantwell, A general classification of three-dimensional flow fields. Phys. Fluids A-Fluid Dyn. 2, 765 (1990).

    Article  MathSciNet  Google Scholar 

  12. J. C. R. Hunt, A. A. Wray, and P. Moin, Eddies, Stream, and Convergence Zones in Turbulent Flows. Center for Turbulence Research Report, No. CTR-S88 (1988), pp. 193–208

  13. J. Zhou, R. J. Adrian, S. Balachandar, and T. M. Kendall, Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Jeong, and F. Hussain, On the identification of a vortex. J. Fluid. Mech. 285, 69 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Cucitore, M. Quadrio, and A. Baron, On the effectiveness and limitations of local criteria for the identification of a vortex. Eur. J. Mech. — B Fluids 18, 261 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Pirozzoli, M. Bernardini, and F. Grasso, Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613, 205 (2008).

    Article  MATH  Google Scholar 

  17. Q. Gao, C. Ortiz-dueñas, and E. K. Longmire, Analysis of vortex populations in turbulent wall-bounded flows. J. Fluid Mech. 678, 87 (2011).

    Article  MATH  Google Scholar 

  18. C. Wang, Q. Gao, J. Wang, B. Wang, and C. Pan, Experimental study on dominant vortex structures in near-wall region of turbulent boundary layer based on tomographic particle image velocimetry. J. Fluid Mech. 874, 426 (2019).

    Article  Google Scholar 

  19. C. Liu, Y. Gao, S. Tian, and X. Dong, Rortex — A new vortex vector definition and vorticity tensor and vector decompositions. Phys. Fluids 30, 035103 (2018), arXiv: 1802.04099.

    Article  Google Scholar 

  20. S. Tian, Y. Gao, X. Dong, and C. Liu, Definitions of vortex vector and vortex. J. Fluid Mech. 849, 312 (2018), arXiv: 1712.03887.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Liu, and C. Liu, Modified normalized Rortex/vortex identification method. Phys. Fluids 31, 061704 (2019), arXiv: 1905.03655.

    Article  Google Scholar 

  22. J. Liu, Y. Gao, and C. Liu, An objective version of the Rortex vector for vortex identification. Phys. Fluids 31, 065112 (2019).

    Article  Google Scholar 

  23. Y. Wang, Y. Gao, and C. Liu, Letter: Galilean invariance of Rortex. Phys. Fluids 30, 111701 (2018).

    Article  Google Scholar 

  24. Y. Gao, and C. Liu, Rortex and comparison with eigenvalue-based vortex identification criteria. Phys. Fluids 30, 085107 (2018), arXiv: 1805.03984.

    Article  Google Scholar 

  25. V. Kolář, and J. Šístek, Stretching response of Rortex and other vortex-identification schemes. AIP Adv. 9, 105025 (2019).

    Article  Google Scholar 

  26. S. Tian, H. Fu, J. Xia, and Y. Yang, A vortex identification method based on local fluid rotation. Phys. Fluids 32, 015104 (2020).

    Article  Google Scholar 

  27. Q. Chen, Q. Zhong, M. Qi, and X. Wang, Comparison of vortex identification criteria for planar velocity fields in wall turbulence. Phys. Fluids 27, 085101 (2015).

    Article  Google Scholar 

  28. J. Zhan, Y. Li, W. Wai, and W. Hu, Comparison between the Q criterion and Rortex in the application of an in-stream structure. Phys. Fluids 31, 121701 (2019).

    Article  Google Scholar 

  29. A. E. Perry, and M. S. Chong, On the mechanism of wall turbulence. J. Fluid Mech. 119, 173 (1982).

    Article  MATH  Google Scholar 

  30. R. J. Adrian, Hairpin vortex organization in wall turbulencea. Phys. Fluids 19, 041301 (2007).

    Article  MATH  Google Scholar 

  31. J. Zhou, Self-sustaining formation of packets of hairpin vortices in a turbulent wall layer, (University of Illinois at Urbana-Champaign, Urbana-Champaign, 1997).

    Google Scholar 

  32. C.-Y. Wang, Q. Gao, B. Wang, C. Pan, and J.-J. Wang, Vortex-to-velocity reconstruction for wall-bounded turbulence via the field-based linear stochastic estimation. J. Fluid Mech. 922 (2021).

  33. G. Borrell, J. A. Sillero, and J. Jiménez, A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in BG/P supercomputers. Comput. Fluids 80, 37 (2013)

    Article  MATH  Google Scholar 

  34. J. A. Sillero, J. Jiménez, and R. D. Moser, One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+ ≈ 2000. Phys. Fluids 25, 105102 (2013).

    Article  Google Scholar 

  35. I. Marusic, W. J. Baars, and N. Hutchins, Scaling of the streamwise turbulence intensity in the context of inner-outer interactions in wall turbulence. Phys. Rev. Fluids 2, 100502 (2017).

    Article  Google Scholar 

  36. H. P. Wang, S. Z. Wang, and G. W. He, The spanwise spectra in wall-bounded turbulence. Acta Mech. Sin. 34, 452 (2018).

    Article  Google Scholar 

  37. W. Wang, C. Pan, and J. Wang, Wall-normal variation of span-wise streak spacing in turbulent boundary layer with low-to-moderate reynolds number. Entropy 21, 24 (2019).

    Article  Google Scholar 

  38. S. K. Robinson, The kinematics of turbulent boundary layer structure. Dissertation for Doctoral Degree. (Stanford University, Stanford, 1991).

    Google Scholar 

  39. Y. Wang, Y. Gao, J. Liu, and C. Liu, Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition. J. Hydrodyn. 31, 464 (2019).

    Article  Google Scholar 

  40. J. C. del Álamo, J. Jiménez, P. Zandonade, and R. D. Moser, Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329 (2006).

    Article  MATH  Google Scholar 

  41. M. Tanahashi, T. Miyauchi, and J. Ikeda, Identification of coherent fine scale structure in turbulence. in: IUTAM Symposium on Simulation and Identification of Organized Structures in Flows, 131–140, (Springer, Berlin, 1999).

    Chapter  Google Scholar 

  42. J. Jiménez, Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842 (2018).

  43. D. Stauffer and A. Aharony, Introduction to percolation theory, (Taylor and Francis, 1994).

  44. Y. Jodai, and G. E. Elsinga, Experimental observation of hairpin autogeneration events in a turbulent boundary layer. J. Fluid Mech. 795, 611 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Stanislas, L. Perret, and J. M. Foucaut, Vortical structures in the turbulent boundary layer: A possible route to a universal representation. J. Fluid Mech. 602, 327 (2008).

    Article  MATH  Google Scholar 

  46. Y. Wu, and K. T. Christensen, Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568, 55 (2006).

    Article  MATH  Google Scholar 

  47. S. Pirozzoli, M. Bernardini, and F. Grasso, On the dynamical relevance of coherent vortical structures in turbulent boundary layers. J. Fluid Mech. 648, 325 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11902371 and 91852204), and China Postdoctoral Science Foundation (Grant No. 2019M653172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Gao  (高琪).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Gao, Q., Chen, T. et al. On the effectiveness of local vortex identification criteria in the vortex representation of wall-bounded turbulence. Acta Mech. Sin. 38, 321463 (2022). https://doi.org/10.1007/s10409-021-09085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09085-x

Navigation