Skip to main content
Log in

Effect of solid particle erosion on fracture strength of low density polyethylene film

固体颗粒侵蚀对低密度聚乙烯薄膜断裂强度的影响

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study, the influence of solid particle erosion on the fracture strength of low density polyethylene (LDPE) film under controlled conditions is investigated through impact experiments. The variations in the residual fracture stress as well as the residual fracture strain of the LDPE film after solid particle impact against the impact angle (α), impact velocity (vp) and impact duration (t) are analysed. The study revealed that the fracture stress and the fracture strain of the LDPE film decrease with an increase in the impact duration, and the degradation rate increases with the impact velocity and impact angle. Furthermore, the fracture stress and the fracture strain of LDPE film decrease exponentially against the impact energy under the same particle impact angle condition, and the reductions of fracture stress and fracture strain increase quasi-linearly with the sine-squared impact angle under the same impact energy. The study proposes empirical models to predict the attenuation of the fracture stress and the fracture strain of LDPE films due to the finite particle impact energy.

Zh

摘要通过冲击试验研究受控条件下固体颗粒侵蚀对低密度聚乙烯(LDPE)薄膜断裂强度的影响, 分析了固体颗粒冲击后LDPE薄膜的残余断裂应力和残余断裂应变随冲击角(α)、冲击速度(vp)和冲击持续时间(t)的变化规律. 研究表明LDPE薄膜的断裂应力和断裂应变随冲击时间的延长而减小, 降解速率随冲击速度和冲击角的增大而增大. 此外, 在相同的粒子冲击角条件下, LDPE薄膜的断裂应力和断裂应变随冲击能呈指数下降, 在相同的冲击能条件下, 断裂应力和断裂应变的下降与正弦平方冲击角呈准线性增加. 本研究提出了预测LDPE薄膜由于有限粒子冲击能量引起的断裂应力和断裂应变衰减的经验模型.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Biswas, A. Satapathy, and A. Patnaik, Erosion wear behavior of polymer composites: A review. J. Reinforced Plast. Compos. 29, 2898 (2010).

    Article  Google Scholar 

  2. E. H. Coker, and D. Van Peursem, The erosion of horizontal sand slurry pipelines resulting from inter-particle collision. Wear 400–401, 74 (2018).

    Article  Google Scholar 

  3. H. Wahl, F. Hartstein, Strahlverschleiss franckhsche verhandlung (Lawrence Livermore National Laboratory, Stuttgart, 1946), p. 11447.

    Google Scholar 

  4. C. E. Smeltzer, M. E. Gulden, and W. A. Compton, Mechanisms of metal removal by impacting dust particles. J. Basic Eng. 92, 639 (1970).

    Article  Google Scholar 

  5. S. Fidan, Tribological performance of polymethyl methacrylate as an aviation polymer. J. Polym. Eng. 34, 569 (2014).

    Article  Google Scholar 

  6. G. Chen, W. Xian, Q. Wang, and Y. Li, Molecular simulation-guided and physics-informed mechanistic modeling of multifunctional polymers. Acta Mech. Sin. 37, 725 (2021).

    Article  MathSciNet  Google Scholar 

  7. H. Dang, P. Liu, Y. Zhang, Z. Zhao, L. Tong, C. Zhang, and Y. Li, Theoretical prediction for effective properties and progressive failure of textile composites: A generalized multi-scale approach. Acta Mech. Sin. 37, 1222 (2021).

    Article  MathSciNet  Google Scholar 

  8. G. He, Y. Liu, X. Deng, and L. Fan, Constitutive modeling of viscoelastic — viscoplastic behavior of short fiber reinforced polymers coupled with anisotropic damage and moisture effects. Acta Mech. Sin. 35, 495 (2019).

    Article  MathSciNet  Google Scholar 

  9. L. M. Yang, L. L. Wang, Z. X. Zhu: A micromechanical study on the nonlinear viscoelastic constitutive relation of high rigidity particulate-filled polymers. Acta Mech. Sin. 9, 606–614 (1993).

    Google Scholar 

  10. M. Nazemian, and G. R. Molaeimanesh, Impact of carbon paper structural parameters on the performance of a polymer electrolyte fuel cell cathode via lattice Boltzmann method. Acta Mech. Sin. 36, 367 (2020).

    Article  MathSciNet  Google Scholar 

  11. Y. Chen, H. Zhang, J. Chen, G. Kang, and Y. Hu, Hyperelastic model for polyacrylamide-gelatin double network shape-memory hydrogels. Acta Mech. Sin. 37, 748 (2021).

    Article  Google Scholar 

  12. U. K. Debnath, M. A. Chowdhury, D. M. Nuruzzaman, M. M. Rahman, B. K. Roy, M. A. Kowser, and M. M. Islam, Erosion characteristics of Teflon under different operating conditions. J. Polym. Eng. 35, 889 (2015).

    Article  Google Scholar 

  13. B. A. Shuvho, M. A. Chowdhury, and U. K. Debnath, Analysis of artificial neural network for predicting erosive wear of Nylon-12 polymer. Matls. Perf. Charact. 8, 20180164 (2019).

    Article  Google Scholar 

  14. J. Zahavi, and G. F. Schmitt Jr., Solid particle erosion of reinforced composite materials. Wear 71, 179 (1981).

    Article  Google Scholar 

  15. I. Finnie, Erosion of surfaces by solid particles. Wear 3, 87 (1960).

    Article  Google Scholar 

  16. M. A. Chowdhury, U. K. Debnath, D. M. Nuruzzaman, and M. M. Islam, Experimental analysis of aluminum alloy under solid particle erosion process. Proc. Institut. Mech. Eng. Part J-J. Eng. Tribol. 230, 1516 (2016).

    Article  Google Scholar 

  17. M. A. Chowdhury, U. K. Debnath, D. M. Nuruzzaman, and M. M. Islam, Experimental evaluation of erosion of gunmetal under asymmetrical shaped sand particle. Adv. Tribol. 2015, 1 (2015).

    Article  Google Scholar 

  18. M. A. Chowdhury, U. K. Debnath, D. M. Nuruzzaman, and M. M. Islam, Study of erosive surface characterization of copper alloys under different test conditions. Surf. Interfaces 9, 245 (2017).

    Article  Google Scholar 

  19. J. Villanueva, L. Trino, J. Thomas, D. Bijukumar, D. Royhman, M. M. Stack, and M. T. Mathew, Corrosion, tribology, and tribocorrosion research in biomedical implants: Progressive trend in the published literature. J. Bio. Tribo. Corros. 3, 1 (2017).

    Article  Google Scholar 

  20. S. Arjula, and A. P. Harsha, Study of erosion efficiency of polymers and polymer composites. Polym. Testing 25, 188 (2006).

    Article  Google Scholar 

  21. N. Miyazaki, and N. Takeda, Solid particle erosion of fiber reinforced plastics. J. Compos. Mater. 27, 21 (1993).

    Article  Google Scholar 

  22. N. Miyazaki, and T. Hamao, Effect of interfacial strength on erosion behavior of FRPs. J. Compos. Mater. 30, 35 (1996).

    Article  Google Scholar 

  23. N. Banazadeh-Neishabouri, and S. A. Shirazi, Erosive wear behavior of fiberglass reinforced plastic composite and polyethylene, in: Fluids Engineering Division Summer Meeting (American Society of Mechanical Engineers, 2019), p. 59087.

  24. M. A. Chowdhury, B. A. Shuvho, U. K. Debnath, and D. M. Nuruzzaman, Prediction and optimization of erosion rate of carbon fiber — reinforced ebonite using fuzzy logic. J. Test. Eval. 47, 20170589 (2019).

    Article  Google Scholar 

  25. G. C. Papanicolaou, G. Samoilis, S. Giannis, N. M. Barkoula, and J. Karger-Kocsis, A model for the accurate prediction of the residual strength after damage due to impact and erosion of FRPs. in: Recent Advances in Experimental Mechanics, edited by E. E. Gdoutos (Springer, Dordrecht, 2002), pp. 175–184.

    Google Scholar 

  26. T. Sinmazçelik, S. Fidan, and V. Günay, Residual mechanical properties of carbon/polyphenylenesulphide composites after solid particle erosion. Mater. Des. 29, 1419 (2008).

    Article  Google Scholar 

  27. N. Yang, and H. Nayeb-Hashemi, The effect of solid particle erosion on the mechanical properties and fatigue life of fiber-reinforced composites. J. Compos. Mater. 41, 559 (2007).

    Article  Google Scholar 

  28. S. Ray, A. K. Rout, and A. KuSahoo, A study on tribological behavior of glass-epoxy composite filled with granite dust. IOP Conf. Ser.-Mater. Sci. Eng. 225, 012097 (2017).

    Article  Google Scholar 

  29. M. Fang, N. Zhang, M. Huang, B. Lu, K. Lamnawar, C. Liu, and C. Shen, Effects of hydrothermal aging of carbon fiber reinforced polycarbonate composites on mechanical performance and sand erosion resistance. Polymers 12, 2453 (2020).

    Article  Google Scholar 

  30. Y. Cui, C. Wang, and Z. Tang, Erosion resistance improvement of polymer matrix composites by detonation-sprayed multilayered coatings. J. Therm. Spray Tech. 30, 394 (2021).

    Article  Google Scholar 

  31. A. Hanafi, and A. Papasolomontos, Integrated production and protection under protected cultivation in the Mediterranean region. Biotechnol. Adv. 17, 183 (1999).

    Article  Google Scholar 

  32. N. Hassini, K. Guenachi, A. Hamou, J. M. Saiter, S. Marais, and E. Beucher, Polyethylene greenhouse cover aged under simulated sub-Saharan climatic conditions. Polym. Degrad. Stab. 75, 247 (2002).

    Article  Google Scholar 

  33. V. R. Gumen, I. V. Knyazkina, V. G. Kolbaya, and V. V. Kovriga, Investigation of the correlation between the natural extension ratio and abrasive wear resistance in polyethylene. J. Frict. Wear 40, 128 (2019).

    Article  Google Scholar 

  34. N. Y. Emekli, K. Büyüktas, and A. Basçetinçelik, Changes of some mechanical properties of different low-density polyethylene (LDPE) films during the service life. Appl. Eng. Agr. 33, 913 (2017).

    Article  Google Scholar 

  35. L. Stefani, G. Vox, and E. Schettini, Variation of the mechanical and radiometric properties of LDPE greenhouse films exposed to agrochemicals and solar radiation. Acta Hortic. 905 (2014).

  36. A. Adam, S. A. Kouider, B. Youssef, A. Hamou, and J. M. Saiter, Studies of polyethylene multi layer films used as greenhouse covers under Saharan climatic conditions. Polym. Testing 24, 834 (2005).

    Article  Google Scholar 

  37. A. Dehbi, B. Youssef, C. Chappey, A. H. I. Mourad, P. Picuno, and D. Statuto, Multilayers polyethylene film for crop protection in harsh climatic conditions. Adv. Mater. Sci. Eng. 2017(1), 1 (2017).

    Article  Google Scholar 

  38. J. Zhang, Y. Shao, and N. Huang, Measurements of dust deposition velocity in a wind-tunnel experiment. Atmos. Chem. Phys. 14, 8869 (2014).

    Article  Google Scholar 

  39. ISO 1184:1983. Plastics—Determination of tensile properties of films.

  40. Y. Zhu, M. D. Engelhardt, and Z. Pan, Simulation of ductile fracture initiation in steels using a stress triaxiality-shear stress coupled model. Acta Mech. Sin. 35, 600 (2019).

    Article  Google Scholar 

  41. J. Yu, X. Ni, X. Liu, Y. Fu, and Z. Du, Damage and fracture model for eutectic composite ceramics. Acta Mech. Sin. 35, 190 (2019).

    Article  MathSciNet  Google Scholar 

  42. J. Wang, Y. Fang, R. M. Hao, R. P. Zhou, D. D. Zhou, and C. X. Hai, Study on the wind-sand flow structure near the ground during a sandstorm in typical desertification grassland. Adv. Mater. Res. 518–523, 4568 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Wang  (王国华).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 92052202, and 11702122).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Xu, S., Ma, J. et al. Effect of solid particle erosion on fracture strength of low density polyethylene film. Acta Mech. Sin. 38, 121395 (2022). https://doi.org/10.1007/s10409-021-09069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09069-3

Keywords

Navigation