Skip to main content

Advertisement

Log in

Corrosion, Tribology, and Tribocorrosion Research in Biomedical Implants: Progressive Trend in the Published Literature

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

There has been significant progress in implant research during last the 10 years (2005–2015). The increase in the elderly population coupled with a lack of proper physical activity is a potential cause for the sudden increment in implant usage. Implant life and performance are influenced by several parameters; however, literature showed that corrosion, tribology, and tribocorrosion processes of implant materials are main concern and driving mechanisms in the degradation processes. There is currently a large need for research in this area. Furthermore, there has been no recent systematic literature review to analyze the progress of research and published work in this area. The objective of this work is to provide a trend in the published articles in the area of corrosion, tribology, and tribocorrosion during last century, with emphasis on the progress over the last 10 years. The paper also tries to report the current state-of-the-art research in the area of corrosion, tribology, and tribocorrosion research in bio-implants based on number of published articles. The reviews demonstrate that during the last 10 years, there has been significant progress in implant research, particularly in the tribocorrosion area, however, significantly lower than tribology and corrosion research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Mathew MT, Srinivasa Pai P, Pourzal R et al (2010) Significance of tribocorrosion in biomedical applications: overview and current status. Adv Tribol. 2009:e250986

    Google Scholar 

  2. Barão VA, Sukotjo C, Mathew MT (2013) Fundamentals of linking tribology and corrosion (Tribocorrosion) for medical applications: bio-tribocorrosion. In: Menezes PL, Nosonovsky M, Ingole SP et al (eds) Tribology for scientists and engineers. Springer, New York, pp 637–655

    Chapter  Google Scholar 

  3. Barril S, Mischler S, Landolt D (2004) Influence of fretting regimes on the tribocorrosion behaviour of Ti6Al4 V in 0.9 wt% sodium chloride solution. Wear 256(9–10):963–972

    Article  Google Scholar 

  4. Ponthiaux P, Wenger F, Drees D, Celis JP (2004) Electrochemical techniques for studying tribocorrosion processes. Spec Issue Tribo-Corros 256(5):459–468

    Google Scholar 

  5. Jin Z, Fisher J (2014) Tribology in joint replacement. In: Revell PA (ed) Joint replacement technology (second edition). Woodhead Publishing, Amsterdam, pp 31–61

    Chapter  Google Scholar 

  6. Hutchings IM (1992) Tribology: friction and wear of engineering materials. Mater Des 13(3):187

    Article  Google Scholar 

  7. Azzi M, Klemberg-Sapieha JE (2011) Tribocorrosion test protocols for sliding contacts. In: Landolt D, Mischler S (eds) Tribocorrosion of passive metals and coatings. Woodhead Publishing, Amsterdam, pp 222–238

    Chapter  Google Scholar 

  8. Wood RJK, Wharton JA (2011) Coatings for tribocorrosion protection. In: Landolt D, Mischler S (eds) Tribocorrosion of passive metals and coatings. Woodhead Publishing, Amsterdam, pp 296–333

    Chapter  Google Scholar 

  9. Stack MM, Abdulrahman GH (2010) Mapping erosion-corrosion of carbon steel in oil exploration conditions: some new approaches to characterizing mechanisms and synergies. Tribol Int 43(7):1268–1277

    Article  Google Scholar 

  10. Cao S, Guadalupe Maldonado S, Mischler S (2015) Tribocorrosion of passive metals in the mixed lubrication regime: theoretical model and application to metal-on-metal artificial hip joints. Wear 324–325:55–63

    Article  Google Scholar 

  11. Hesketh J, Meng Q, Dowson D, Neville A (2013) Biotribocorrosion of metal-on-metal hip replacements: how surface degradation can influence metal ion formation. 39th LEEDS-LYON Symp. Tribol Int 65:128–137

    Article  Google Scholar 

  12. Alves SA, Bayón R, de Viteri VS et al (2015) Tribocorrosion behavior of calcium- and phosphorous-enriched titanium oxide films and study of osteoblast interactions for dental implants. J Bio Tribo Corros. 1(3):1–21

    Article  Google Scholar 

  13. Pourzal R, Cichon R, Mathew MT et al (2014) Design of a tribocorrosion bioreactor for the analysis of immune cell response to in situ generated wear products. J Long Term Eff Med Implants 24(1):65–76

    Article  Google Scholar 

  14. Souza JCM, Henriques M, Teughels W et al (2015) Wear and corrosion interactions on titanium in oral environment: literature review. J. Bio Tribo Corros. 1(2):1–13

    Article  Google Scholar 

  15. Affatato S, Grillini L (2013) Topography in bio-tribocorrosion. In: Yan Yu (ed) Bio-tribocorrosion in biomaterials and medical implants. Woodhead Publishing, Amsterdam, pp 1–22

    Chapter  Google Scholar 

  16. Butt A, Lucchiari NB, Royhman D et al (2014) Design, development, and testing of a compact tribocorrosion apparatus for biomedical applications. J Bio Tribo Corros. 1(1):1–14

    Google Scholar 

  17. Mathew MT, Barão VA, Yuan JC-C et al (2012) What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium? J Mech Behav Biomed Mater 8:71–85

    Article  Google Scholar 

  18. Mathew MT, Abbey S, Hallab NJ et al (2012) Influence of pH on the tribocorrosion behavior of CpTi in the oral environment: synergistic interactions of wear and corrosion. J Biomed Mater Res, Part B 100B(6):1662–1671

    Article  Google Scholar 

  19. Licausi MP, Igual Muñoz A, Amigó Borrás V (2013) Influence of the fabrication process and fluoride content on the tribocorrosion behaviour of Ti6Al4 V biomedical alloy in artificial saliva. J Mech Behav Biomed Mater 20:137–148

    Article  Google Scholar 

  20. Souza JCM, Barbosa SL, Ariza E et al (2012) Simultaneous degradation by corrosion and wear of titanium in artificial saliva containing fluorides. Wear 292–293:82–88

    Article  Google Scholar 

  21. Barão VA, Mathew MT, Assunção WG et al (2011) The role of lipopolysaccharide on the electrochemical behavior of titanium. J Dent Res 90(5):613–618

    Article  Google Scholar 

  22. Mathew MT, Kerwell S, Lundberg HJ et al (2014) Tribocorrosion and oral and maxillofacial surgical devices. Br J Oral Maxillofac Surg 52(5):396–400

    Article  Google Scholar 

  23. Nguyen L-CL, Lehil MS, Bozic KJ (2015) Trends in total knee arthroplasty implant utilization. J Arthroplast 30(5):739–742

    Article  Google Scholar 

  24. Malchau H, Graves SE, Porter M et al (2015) The next critical role of orthopedic registries. Acta Orthop. 86(1):3–4

    Article  Google Scholar 

  25. Cohen J. 1988. Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Routledge Academic; 567 p

  26. Basko-Plluska JL, Thyssen JP, Schalock PC (2011) Cutaneous and systemic hypersensitivity reactions to metallic implants. Dermatitis 22(2):65–79

    Google Scholar 

  27. Sadiq K, Stack MM, Black RA (2015) Wear mapping of CoCrMo alloy in simulated bio-tribocorrosion conditions of a hip prosthesis bearing in calf serum solution. Mater Sci Eng 49:452–462

    Article  Google Scholar 

  28. Dental implant facts and figures. FastStats [Internet]. http://www.cdc.gov/nchs/fastats/inpatient-surgery.htm. (Accessed on Sept 23rd 2016)

  29. Vervaeke S, Collaert B, Cosyn J et al (2015) A multifactorial analysis to identify predictors of implant failure and peri-implant bone loss. Clin Implant Dent Relat Res. 17(Suppl 1):e298–307

    Article  Google Scholar 

  30. Shnaiderman-Shapiro A, Dayan D, Buchner A et al (2014) Histopathological spectrum of bone lesions associated with dental implant failure: osteomyelitis and beyond. Head Neck Pathol. 9(1):140–146

    Article  Google Scholar 

  31. Chaturvedi T (2013) Allergy related to dental implant and its clinical significance. Clin Cosmet Investig Dent. 5:57–61

    Article  Google Scholar 

  32. Shah KM, Wilkinson JM, Gartland A (2015) Cobalt and chromium exposure affects osteoblast function and impairs the mineralization of prosthesis surfaces in vitro. J Orthop Res 33(11):1663–1670

    Article  Google Scholar 

  33. Kwon Y-M, Ostlere SJ, McLardy-Smith P et al (2011) “Asymptomatic” pseudotumors after metal-on-metal hip resurfacing arthroplasty: prevalence and metal ion study. J Arthroplast 26(4):511–518

    Article  Google Scholar 

  34. Bitar D (2015) Biological response to prosthetic debris. World J Orthop 6(2):172

    Article  Google Scholar 

  35. Posada OM, Gilmour D, Tate RJ, Grant MH (2014) CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells. Toxicol Appl Pharmacol 281(1):125–135

    Article  Google Scholar 

  36. Samelko L, Caicedo MS, Lim S-J et al (2013) Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure. PLoS ONE 8(6):e67127

    Article  Google Scholar 

  37. Yan Y, Neville A (2013) Bio-tribocorrosion: surface interactions in total joint replacement (TJR). Bio-tribocorrosion in biomaterials and medical implants. Woodhead Publishing, Amsterdam, pp 309–340

    Book  Google Scholar 

  38. Mathew MT, Wimmer MA (2013) Tribocorrosion in artificial joints: in vitro testing and clinical implications [Internet]. In: Yan Y (ed) Bio-tribocorrosion in biomaterials and medical implants. Woodhead Publishing, Amsterdam, pp 341–371

    Chapter  Google Scholar 

  39. Swaminathan V, Gilbert JL (2013) Potential and frequency effects on fretting corrosion of Ti6Al4 V and CoCrMo surfaces. J Biomed Mater Res A 101(9):2602–2612

    Article  Google Scholar 

  40. Daley B, Doherty AT, Fairman B, Case CP (2004) Wear debris from hip or knee replacements causes chromosomal damage in human cells in tissue culture. J Bone Joint Surg Br 86(4):598–606

    Google Scholar 

  41. Schmalzried TP, Callaghan JJ (1999) Wear in total hip and knee replacements. J Bone Joint Surg Am 81(1):115–136

    Article  Google Scholar 

  42. Teeter MG, Carroll MJ, Walch G, Athwal GS (2016) Tribocorrosion in shoulder arthroplasty humeral component retrievals. J Shoulder Elb Surg. 25(2):311–315

    Article  Google Scholar 

  43. Eckert JA, Mueller U, Jaeger S et al (2016) Fretting and corrosion in modular shoulder arthroplasty: a retrieval analysis. BioMed Res Int. 2016:1–7

    Article  Google Scholar 

  44. Kerwell S, Alfaro M, Pourzal R et al (2016) Examination of failed retrieved temporomandibular joint (TMJ) implants. Acta Biomater 32:324–335

    Article  Google Scholar 

  45. Mercuri LG (2005) Principles for the revision of failed TMJ prostheses. J Oral Maxillofac Surg 63(8):133

    Article  Google Scholar 

  46. Hallab NJ, Cunningham BW, Jacobs JJ (2003) Spinal implant debris-induced osteolysis. Spine 28(20S):S125–S138

    Article  Google Scholar 

  47. Hallab NJ (2009) A review of the biologic effects of spine implant debris: fact from fiction. SAS J. 3(4):143–160

    Article  Google Scholar 

  48. Prieto HA, Berbari EF, Sierra RJ (2014) Acute delayed infection: increased risk in failed metal on metal total hip arthroplasty. J Arthroplast 29(9):1808–1812

    Article  Google Scholar 

  49. Matarazzo HL (2014) Defective metal on metal hip implant claims in federal multidistrict litigation: more than 8500 filed cases. The Senior Lawyer, NYSBA

    Google Scholar 

  50. Ring G, O’Mullane J, O’Riordan A et al (2016) Trace metal determination as it relates to metallosis of orthopaedic implants: evolution and current status. Clin Biochem 49:617–635

    Article  Google Scholar 

  51. Vundelinckx BJ, Verhelst LA, De Schepper J (2013) Taper corrosion in modular hip prostheses: analysis of serum metal ions in 19 patients. J Arthroplast 28(7):1218–1223

    Article  Google Scholar 

  52. Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg. 9(1):18

    Article  Google Scholar 

  53. Beline T, da Marques SV, Matos AO et al (2016) Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications. Biointerphases 11(1):11013

    Article  Google Scholar 

  54. da Marques SV, Barão VAR, da Cruz NC et al (2015) Electrochemical behavior of bioactive coatings on cp-Ti surface for dental application. Corros Sci 100:133–146

    Article  Google Scholar 

  55. Chaudary T, Jacobs M, Wimmer MA et al (2014) Proof of concept for a metal-ion electrochemical biosensor (MIEB) for early diagnostic detection of metal ion release in orthopedic patients. Trans Orthop Res Soc 14–16

Download references

Acknowledgments

The National Institute of Health (NIH-R03-AR064005) and the National Science Foundation (NSF-1160951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Mathew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villanueva, J., Trino, L., Thomas, J. et al. Corrosion, Tribology, and Tribocorrosion Research in Biomedical Implants: Progressive Trend in the Published Literature. J Bio Tribo Corros 3, 1 (2017). https://doi.org/10.1007/s40735-016-0060-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-016-0060-1

Keywords

Navigation