Skip to main content
Log in

Massive heat transfer enhancement of Rayleigh-Bénard turbulence over rough surfaces and under horizontal vibration

粗糙表面和水平振动下Rayleigh-Bénard湍流的大规模传热强化

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We carried out direct numerical simulations of turbulent Rayleigh-Bénard convection (RBC) with accounting for both the roughness and the external vibration over the Rayleigh number range 107Ra ≤ 1011 and the vibration frequency range 0 ≤ ω ≤ 1400. The triangular rough elements are uniformly distributed over the top and bottom surfaces, and the vibration is applied in the horizontal direction. It is shown that under the combined action of roughness and horizontal vibration, with increasing the vibration frequency ω, the heat transfer is initially decreased a little and then greatly enhanced after ω exceeds the critical value. The physical reason for massive heat-transfer-enhancement is that high frequency vibration destabilizes thermal boundary layers (BL) over rough surfaces, triggers abundant emissions of thermal plumes, and strengthens the motion of large-scale circulation (LSC), which consequently thins the thickness of thermal BL and heightens the convective transport. In addition, it is shown that vibration-induced heat-transfer-enhancement can obviously affect the scaling behavior between the heat flux and the Rayleigh number, and the scaling exponent increases with increasing ω, whereas the influence of vibration on the scaling behavior between the intensity of LSC and Ra is very weak.

摘要

本文在考虑粗糙度和外部振动条件下, 对瑞利数范围107< Ra < 1011和振动频率范围0 < ω < 1400的Rayleigh-B&acute; enard对流(RBC)湍流进行了直接数值模拟. 三角形粗糙单元均匀分布在顶面和底面上, 并在水平方向上施加振动. 结果表明, 在粗糙度和水平振动的共同作用下, 随着振动频率ω的增加, 传热最初略有降低, 当ω超过临界值后, 传热大大增强. 大量传热强化的物理原因是高频振动使粗糙表面上的热边界层(BL)不稳定, 触发大量热羽流的排放, 并加强大尺度环流(LSC)的运动, 从而使热边界层厚度变薄, 对流输送增强. 此外, 研究还表明振动强化传热可以明显影响热流密度与瑞利数之间的标度行为, 标度指数随ω的增加而增加; 而振动对LSC强度和Ra之间的标度行为的影响非常微弱.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Dong, B. F. Wang, Y. H. Dong, Y. X. Huang, N. Jiang, Y. L. Liu, Z. M. Lu, X. Qiu, Z. Q. Tang, and Q. Zhou, Influence of spatial arrangements of roughness elements on turbulent Rayleigh-Bénard convection, Phys. Fluids 32, 045114 (2020).

    Article  Google Scholar 

  2. H. Li, T. Yu, D. Wang, and H. Xu, Heat-transfer enhancing mechanisms induced by the coherent structures of wall-bounded turbulence in channel with rib, Int. J. Heat Mass Transfer 137, 446 (2019).

    Article  Google Scholar 

  3. Y. Rao, P. Zhang, Y. Xu, and H. Ke, Experimental study and numerical analysis of heat transfer enhancement and turbulent flow over shallowly dimpled channel surfaces, Int. J. Heat Mass Transfer 160, 120195 (2020).

    Article  Google Scholar 

  4. W. Gong, J. Shen, W. Dai, Z. Deng, and M. Gong, Thermal-hydraulic performance enhancement analysis of microtube with superhydrophobic surfaces, Int. J. Heat Mass Transfer 144, 118697 (2019).

    Article  Google Scholar 

  5. W. Dang, and L. B. Wang, Convective heat transfer enhancement mechanisms in circular tube inserted with a type of twined coil, Int. J. Heat Mass Transfer 169, 120960 (2021).

    Article  Google Scholar 

  6. Z. Lu, G. Liu, and B. Wang, Flow structure and heat transfer of electrothermo-convection in a dielectric liquid layer, Phys. Fluids 31, 064103 (2019).

    Article  Google Scholar 

  7. B. F. Wang, Q. Zhou, and C. Sun, Vibration-induced boundarylayer destabilization achieves massive heat-transport enhancement, Sci. Adv. 6, eaaz8239 (2020).

    Article  Google Scholar 

  8. X. Chen, X. Bayanheshig, Q. Jiao, X. Tan, and W. Wang, Numerical simulation of ultrasonic enhancement by acoustic streaming and thermal effect on mass transfer through a new computation model, Int. J. Heat Mass Transfer 171, 121074 (2021).

    Article  Google Scholar 

  9. A. Arshad, M. Jabbal, and Y. Yan, Synthetic jet actuators for heat transfer enhancement—A critical review, Int. J. Heat Mass Transfer 146, 118815 (2020).

    Article  Google Scholar 

  10. G. Ahlers, S. Grossmann, and D. Lohse, Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection, Rev. Mod. Phys. 81, 503 (2009).

    Article  Google Scholar 

  11. D. Lohse, and K. Q. Xia, Small-scale properties of turbulent Rayleigh-Bénard convection, Annu. Rev. Fluid Mech. 42, 335 (2010).

    Article  MATH  Google Scholar 

  12. W. V. R. Malkus, The heat transport and spectrum of thermal turbulence, Proc. R. Soc. Lond. 225, 196 (1954).

    MathSciNet  MATH  Google Scholar 

  13. R. H. Kraichnan, Turbulent thermal convection at arbitrary prandtl number, Phys. Fluids 5, 1374 (1962).

    Article  MATH  Google Scholar 

  14. S. Grossmann, and D. Lohse, Multiple scaling in the ultimate regime of thermal convection, Phys. Fluids 23, 045108 (2011).

    Article  Google Scholar 

  15. Y. Shen, P. Tong, and K. Q. Xia, Turbulent convection over rough surfaces, Phys. Rev. Lett. 76, 908 (1996).

    Article  Google Scholar 

  16. Y. B. Du, and P. Tong, Enhanced heat transport in turbulent convection over a rough surface, Phys. Rev. Lett. 81, 987 (1998).

    Article  Google Scholar 

  17. Y. B. Du, and P. Tong, Turbulent thermal convection in a cell with ordered rough boundaries, J. Fluid Mech. 407, 57 (2000).

    Article  MATH  Google Scholar 

  18. P. E. Roche, B. Castaing, B. Chabaud, and B. Hébral, Observation of the 1/2 power law in Rayleigh-Bénard convection, Phys. Rev. E 63, 045303 (2001).

    Article  Google Scholar 

  19. X. L. Qiu, K. Q. Xia, and P. Tong, Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection, J. Turbulence 6, N30 (2005).

    Article  Google Scholar 

  20. J. C. Tisserand, M. Creyssels, Y. Gasteuil, H. Pabiou, M. Gibert, B. Castaing, and F. Chill, Comparison between rough and smooth plates within the same Rayleigh-Bénard cell, Phys. Fluids 23, 015105 (2011).

    Article  Google Scholar 

  21. J. Salort, O. Liot, E. Rusaouën, F. Seychelles, J. C. Tisserand, M. Creyssels, B. Castaing, and F. Chilla, Thermal boundary layer near roughnesses in turbulent Rayleigh-Bénard convection: Flow structure and multistability, Phys. Fluids 26, 015112 (2014).

    Article  MATH  Google Scholar 

  22. P. Wei, T. S. Chan, R. Ni, X. Z. Zhao, and K. Q. Xia, Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection, J. Fluid Mech. 740, 28 (2014).

    Article  MathSciNet  Google Scholar 

  23. Y. C. Xie, and K. Q. Xia, Turbulent thermal convection over rough plates with varying roughness geometries, J. Fluid Mech. 825, 573 (2017), arXiv: 1703.03137.

    Article  MathSciNet  Google Scholar 

  24. E. Rusaouën, O. Liot, B. Castaing, J. Salort, and F. Chill, Thermal transfer in Rayleigh-Bénard cell with smooth or rough boundaries, J. Fluid Mech. 837, 443 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Jiang, X. Zhu, V. Mathai, R. Verzicco, D. Lohse, and C. Sun, Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces, Phys. Rev. Lett. 120, 044501 (2018), arXiv: 1712.09303.

    Article  Google Scholar 

  26. G. Stringano, G. Pascazio, and R. Verzicco, Turbulent thermal convection over grooved plates, J. Fluid Mech. 557, 307 (2006).

    Article  MATH  Google Scholar 

  27. O. Shishkina, and C. Wagner, Modelling the influence of wall roughness on heat transfer in thermal convection, J. Fluid Mech. 686, 568 (2011).

    Article  MATH  Google Scholar 

  28. Y. Z. Zhang, C. Sun, Y. Bao, and Q. Zhou, How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh-Bénard convection, J. Fluid Mech. 836, R2 (2018).

    Article  MATH  Google Scholar 

  29. J. L. Yang, Y. Z. Zhang, T. Jin, Y. H. Dong, B. F. Wang, and Q. Zhou, The Pr-dependence of the critical roughness height in two-dimensional turbulent Rayleigh-Bénard convection, J. Fluid Mech. 911, A52 (2021).

    Article  MATH  Google Scholar 

  30. X. Zhu, R. J. A. M. Stevens, R. Verzicco, and D. Lohse, Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection, Phys. Rev. Lett. 119, 154501 (2017), arXiv: 1704.05126.

    Article  Google Scholar 

  31. S. M. Zen’kovskaya, and I. B. Simonenko, Effect of high frequency vibration on convection initiation, Fluid Dyn. 1, 35 (1966).

    Article  Google Scholar 

  32. R. E. Forbes, C. T. Carley, and C. J. Bell, Vibration effects on convective heat transfer in enclosures, J. Heat Transfer 92, 429 (1970).

    Article  Google Scholar 

  33. G. Z. Gershuni, E. M. Zhukhovitskii, and I. S. Iurkov, On convective stability in the presence of periodically varying parameter, J. Appl. Math. Mech. 34, 442 (1970).

    Article  Google Scholar 

  34. P. M. Gresho, and R. L. Sani, The effects of gravity modulation on the stability of a heated fluid layer, J. Fluid Mech. 40, 783 (1970).

    Article  MATH  Google Scholar 

  35. S. Biringen, and L. J. Peltier, Numerical simulation of 3-d bénard convection with gravitational modulation, Phys. Fluids A-Fluid Dyn. 1, 754 (1990).

    Article  Google Scholar 

  36. K. Hirata, T. Sasaki, and H. Tanigawa, Vibrational effects on convection in a square cavity at zero gravity, J. Fluid Mech. 445, 327 (2001).

    Article  MATH  Google Scholar 

  37. A. Mialdun, I. I. Ryzhkov, D. E. Melnikov, and V. Shevtsova, Experimental evidence of thermal vibrational convection in a nonuniformly heated fluid in a reduced gravity environment, Phys. Rev. Lett. 101, 084501 (2008).

    Article  Google Scholar 

  38. V. Shevtsova, I. I. Ryzhkov, D. E. Melnikov, Y. A. Gaponenko, and A. Mialdun, Experimental and theoretical study of vibration-induced thermal convection in low gravity, J. Fluid Mech. 648, 53 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Bouarab, F. Mokhtari, S. Kaddeche, D. Henry, V. Botton, and A. Medelfef, Theoretical and numerical study on high frequency vibrational convection: Influence of the vibration direction on the flow structure, Phys. Fluids 31, 043605 (2019).

    Article  Google Scholar 

  40. J. Z. Wu, Y. H. Dong, B. F. Wang, and Q. Zhou, Phase decomposition analysis on oscillatory Rayleigh-Bénard turbulence, Phys. Fluids 33, 045108 (2021).

    Article  Google Scholar 

  41. Y. Zhang, Q. Zhou, and C. Sun, Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh-Bénard convection, J. Fluid Mech. 814, 165 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Grossmann, and D. Lohse, Scaling in thermal convection: a unifying theory, J. Fluid Mech. 407, 27 (2000), arXiv: chao-dyn/9909032.

    Article  MathSciNet  MATH  Google Scholar 

  43. E. P. van der Poel, R. J. A. M. Stevens, and D. Lohse, Comparison between two- and three-dimensional Rayleigh-Bénard convection, J. Fluid Mech. 736, 177 (2013).

    Article  MATH  Google Scholar 

  44. Q. Wang, R. Verzicco, D. Lohse, and O. Shishkina, Multiple states in turbulent large-aspect-ratio thermal convection: What determines the number of convection rolls? Phys. Rev. Lett. 125, 074501 (2020), arXiv: 2005.04535.

    Article  Google Scholar 

  45. Y. Zhang, Q. Zhou, and C. Sun, Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh-Bénard convection, J. Fluid Mech. 814, 165 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  46. K. Sugiyama, E. Calzavarini, S. Grossmann, and D. Lohse, Flow organization in two-dimensional non-Oberbeck-Boussinesq Rayleigh-Bénard convection in water, J. Fluid Mech. 637, 105 (2009), arXiv: 0812.3957.

    Article  MATH  Google Scholar 

  47. Q. Zhou, and K. Q. Xia, Thermal boundary layer structure in turbulent Rayleigh-Bénard convection in a rectangular cell, J. Fluid Mech. 721, 199 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Fu Wang  (王伯福).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11988102, 92052201, 91852202, 11825204, and 11972220), the Program of Shanghai Academic Research Leader (Grant No. 19XD1421400), Shanghai Science and Technology Program (Grant Nos. 19JC1412802 and 20ZR1419800), and China Postdoctoral Science Foundation (Grant No. 2020M681259).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JZ., Wang, BF. & Zhou, Q. Massive heat transfer enhancement of Rayleigh-Bénard turbulence over rough surfaces and under horizontal vibration. Acta Mech. Sin. 38, 321319 (2022). https://doi.org/10.1007/s10409-021-09042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09042-x

Navigation