Skip to main content
Log in

Numerical investigation of efficient synthetic jets generated by multiple-frequency actuating signals

多频激励信号产生高效合成射流的数值研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The synthetic jets generated by multiple-frequency actuating signals composed of a basic sinusoidal wave and a superposed high-frequency signal is investigated by two-dimensional simulation in the present study. The effect of the frequency and amplitude of the high-frequency signal on the synthetic jet in the quiescent flow is investigated in detail with stroke length ratio L and Reynolds number \(R{e_{{U_0}}}\) kept as constant. It is found that, with the high-frequency signal superposed, the vortex pairs induced by the synthetic jets are strengthened and accelerated. The distance that the vortex pairs can propagate downstream is also elongated. The entrainment of the synthetic jets is thus enhanced as well. The optimal design is reached when the frequency ratio, defined as the ratio between the superposed signal frequency and the basic signal frequency, is fixed at f+ = 2. At this optimal frequency ratio, the jet entrainment increases monotonously with the amplitude of the high-frequency signal.

摘要

通过二维模拟研究了由基本正弦波和叠加高频信号组成的多频激励信号产生的合成射流. 在冲程长度比L和雷诺数\(R{e_{{U_0}}}\)不变的情况下, 详细研究了高频信号的频率和振幅在净水环境中合成射流的影响. 研究结果表明, 随着高频信号的叠加, 合成射流诱导产生的涡对强度和运动速度均有所增大. 涡对向下游传播的距离也有所增加. 因此, 合成射流的卷吸作用也会增强. 当频率比(定义为叠加信号频率与基本信号频率之间的比率)固定在f+ = 2时达到最优. 在这个最佳频率比下, 射流卷吸作用随高频信号的幅值单调增加.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Glezer, and M. Amitay, Synthetic jets, Annu. Rev. Fluid Mech. 34, 503 (2002).

    Article  MathSciNet  Google Scholar 

  2. Y. Qu, J. Wang, L. Feng, and X. He, Effect of excitation frequency on flow characteristics around a square cylinder with a synthetic jet positioned at front surface, J. Fluid Mech. 880, 764 (2019).

    Article  MathSciNet  Google Scholar 

  3. A. Glezer, M. Amitay, and A. M. Honohan, Aspects of low- and high-frequency actuation for aerodynamic flow control, AIAA J. 43, 1501 (2005).

    Article  Google Scholar 

  4. B. L. Smith, and A. Glezer, The formation and evolution of synthetic jets, Phys. Fluids 10, 2281 (1998).

    Article  MathSciNet  Google Scholar 

  5. Y. Utturkar, R. Holman, R. Mittal, B. Carroll, M. Sheplak, and L. Cattafesta, A jet formation criterion for synthetic jet actuator, AIAA Paper No. 2003-0636, 2003.

  6. R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, Formation criterion for synthetic jets, AIAA J. 43, 2110 (2005).

    Article  Google Scholar 

  7. P. F. Zhang, J. J. Wang, and L. H. Feng, Review of zero-net-mass-flux jet and its application in separation flow control, Sci. China Ser. E-Technol. Sci. 51, 1315 (2008).

    Article  Google Scholar 

  8. B. L. Smith, and G. W. Swift, A comparison between synthetic jets and continuous jets, Exp. Fluids 34, 467 (2003).

    Article  Google Scholar 

  9. M. Amitay, D. E. Parekh, D. R. Smith, V. Kibens, and A. Glezer, Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators, AIAA J. 39, 361 (2001).

    Article  Google Scholar 

  10. M. Amitay, and A. Glezer, Role of actuation frequency in controlled flow reattachment over a stalled airfoil, AIAA J. 40, 209 (2002).

    Article  Google Scholar 

  11. M. Amitay, and A. Glezer, Controlled transients of flow reattachment over stalled airfoils, Int. J. Heat Fluid Flow 23, 690 (2002).

    Article  Google Scholar 

  12. G. P. Cui, L. H. Feng, and L. Y. Liu, Spanwise modulation of a three-dimensional wake using distributed forcing, Aerosp. Sci. Tech. 104, 105934 (2020).

    Article  Google Scholar 

  13. Y. Qu, and J. J. Wang, Statistical characteristics of flow around square cylinder with synthetic jet issued from the rear surface, Acta Aerodyn. Sin. 38, 957 (2020).

    Google Scholar 

  14. Y. Utturkar, M. Arik, C. E. Seeley, and M. Gursoy, An experimental and computational heat transfer study of pulsating jets, J. Heat Transfer 130, 6 (2008).

    Article  Google Scholar 

  15. A. Pavlova, and M. Amitay, Electronic cooling using synthetic jet impingement, J. Heat Transfer 128, 897 (2006).

    Article  Google Scholar 

  16. E. Asgari, and M. Tadjfar, Active control of flow over a rounded ramp by means of single and double adjacent rectangular synthetic jet actuators, Comput. Fluids 190, 98 (2019).

    Article  MathSciNet  Google Scholar 

  17. Q. Liu, Z. Luo, X. Deng, Y. Zhou, L. Wang, and P. Cheng, Vortical structures and density fluctuations analysis of supersonic forward-facing step controlled by self-sustaining dual synthetic jets, Acta Mech. Sin. 36, 1215 (2020).

    Article  Google Scholar 

  18. Z. B. Luo, Z. X. Xia, and B. Liu, New generation of synthetic jet actuators, AIAA J. 44, 2418 (2006).

    Article  Google Scholar 

  19. S. Li, Z. Luo, X. Deng, W. Peng, and Z. Liu, Experimental investigation on active control of flow around a finite-length square cylinder using dual synthetic jet, J. Wind Eng. Indust. Aerodyn. 210, 104519 (2021).

    Article  Google Scholar 

  20. L. Lu, D. Li, Z. Gao, Z. Cao, Y. Bai, and J. Zheng, Characteristics of array of distributed synthetic jets and effect on turbulent boundary layer, Acta Mech. Sin. 36, 1171 (2020).

    Article  MathSciNet  Google Scholar 

  21. A. Qayoum, V. Gupta, P. K. Panigrahi, and K. Muralidhar, Influence of amplitude and frequency modulation on flow created by a synthetic jet actuator, Sens. Actuat. A-Phys. 162, 36 (2010).

    Article  Google Scholar 

  22. P. F. Zhang, and J. J. Wang, Novel signal wave pattern for efficient synthetic jet generation, AIAA J. 45, 1058 (2007).

    Article  Google Scholar 

  23. J. Wang, R. Shan, C. Zhang, and L. Feng, Experimental investigation of a novel two-dimensional synthetic jet, Eur. J. Mech.-B Fluids 29, 342 (2010).

    Article  Google Scholar 

  24. L. D. Kral, J. F. Donovan, A. B. Cain, and A. W. Cary, Numerical simulation of synthetic jet actuators, AIAA Paper No. 1997-1824, 1997.

  25. C. Rumsey, T. Gatski, W. Sellers, V. Vatsa, and S. Viken, in Summary of the 2004 CFD validation workshop on synthetic jets and turbulent separation control: Proceedings of the 2nd AIAA Flow Control Conference, 2004.

  26. H. Tang, and S. Zhong, Simulation and modeling of synthetic jets. In: D. New, and S. Yu, eds. Vortex Rings and Jets. Fluid Mechanics and Its Applications, Vol. 111 (Springer, Singapore, 2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjun Wang  (王晋军).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11721202).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Wang, J. & Wang, J. Numerical investigation of efficient synthetic jets generated by multiple-frequency actuating signals. Acta Mech. Sin. 38, 321177 (2022). https://doi.org/10.1007/s10409-021-09015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09015-x

Keywords

Navigation