Skip to main content
Log in

Compressive properties and energy absorption of BCC lattice structures with bio-inspired gradient design

基于仿生梯度设计的BCC点阵结构的压缩性能和能量吸收

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Inspired by the gradient structure of the nature, two gradient lattice structures, i.e., unidirectional gradient lattice (UGL) and bidirectional gradient lattice (BGL), are proposed based on the body-centered cubic (BCC) lattice to obtain specially designed mechanical behaviors, such as load-bearing and energy absorption capacities. First, a theoretical model is proposed to predict the initial stiffness of the gradient lattice structure under compressive loading, and validated against quasi-static compression tests and finite element models (FEMs). The deformation and failure mechanisms of the two structures are further studied based on experiments and simulations. The UGL structure exhibits a layer-by-layer failure mode, which avoids structure-wise shear failure in uniform structures. The BGL structure presents a symmetry deformation pattern, and the failure initiates at the weakest part. Finally, the energy absorption behaviors are also discussed. This study demonstrates the potential application of gradient lattice structures in load-transfer-path modification and energy absorption by topology design.

摘要

受自然界梯度结构的启发, 本文基于体心立方BCC点阵提出两种梯度点阵结构, 即单向梯度点阵UGL和双向梯度点阵BGL, 以获得特定的力学性能如承载能力和能量吸收能力. 文章首先提出理论模型来预测梯度点阵结构在压缩载荷下的初始刚度, 并通 过准静态压缩试验和有限元模拟对理论模型进行验证. 在实验和模拟基础上进一步研究两种结构的变形和破坏机理. 结果显示 UGL结构表现出逐层破坏模式, 避免了均匀结构典型的剪切破坏; BGL结构呈现出对称变形模式失效, 始于最薄弱部位. 文章最后 讨论了能量吸收行为. 本研究展示了梯度点阵结构在通过拓扑设计修改荷载传递路径和能量吸收方面的潜在应用前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties (2nd edn) (Cambridge University Press, Cambridge, 1997).

    Book  MATH  Google Scholar 

  2. A. Evans, J. W. Hutchinson, and M. F. Ashby, Multifunctionality of cellular metal systems, Prog. Mater. Sci. 43, 171 (1998).

    Article  Google Scholar 

  3. X. Wei, D. Li, and J. Xiong, Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach, Compos. Sci. Tech. 184, 107878 (2019).

    Article  Google Scholar 

  4. B. Wang, J. Q. Hu, Y. Q. Li, Y. T. Yao, S. X. Wang, and L. Ma, Mechanical properties and failure behavior of the sandwich structures with carbon fiber-reinforced X-type lattice truss core, Composite Struct. 185, 619 (2018).

    Article  Google Scholar 

  5. V. H. Carneiro, H. Puga, and J. Meireles, Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements, Acta Mech. Sin. 32, 295 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. S. Deshpande, N. A. Fleck, and M. F. Ashby, Effective properties of the octet-truss lattice material, J. Mech. Phys. Solids 49, 1747 (2001).

    Article  MATH  Google Scholar 

  7. Z. Wu, F. Li, and C. Zhang, Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method, J. Sound Vib. 421, 246 (2018).

    Article  Google Scholar 

  8. I. Ullah, M. Brandt, and S. Feih, Failure and energy absorption characteristics of advanced 3D truss core structures, Mater. Des. 92, 937 (2016).

    Article  Google Scholar 

  9. Y. Liu, Z. Dong, J. Ge, X. Lin, and J. Liang, Stiffness design of a multilayer arbitrary BCC lattice structure with face sheets, Composite Struct. 230, 111485 (2019).

    Article  Google Scholar 

  10. Z. Dong, Y. Liu, Q. Zhang, J. Ge, S. Ji, W. Li, and J. Liang, Microstructural heterogeneity of AlSi10Mg alloy lattice structures fabricated by selective laser melting: Phenomena and mechanism, J. Alloys Compd. 833, 155071 (2020).

    Article  Google Scholar 

  11. K. Ushijima, W. J. Cantwell, R. Mines, S. Tsopanos, and M. Smith, An investigation into the compressive properties of stainless steel microlattice structures, Jnl Sandwich Struct. Mater. 13, 303 (2011).

    Article  Google Scholar 

  12. L. Bai, C. Gong, X. Chen, Y. Sun, L. Xin, H. Pu, Y. Peng, and J. Luo, Mechanical properties and energy absorption capabilities of functionally graded lattice structures: Experiments and simulations, Int. J. Mech. Sci. 182, 105735 (2020).

    Article  Google Scholar 

  13. B. Ji, H. Han, R. Lin, and H. Li, Failure modes of lattice sandwich plate by additive-manufacturing and its imperfection sensitivity, Acta Mech. Sin. 36, 430 (2020).

    Article  MathSciNet  Google Scholar 

  14. C. Li, H. Lei, Y. Liu, X. Zhang, J. Xiong, H. Zhou, and D. Fang, Crushing behavior of multi-layer metal lattice panel fabricated by selective laser melting, Int. J. Mech. Sci. 145, 389 (2018).

    Article  Google Scholar 

  15. Q. Wang, Z. Li, Y. Zhang, S. Cui, Z. Yang, and Z. Lu, Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability, Compos. Part B-Eng. 202, 108379 (2020).

    Article  Google Scholar 

  16. Z. Jia, Y. Yu, S. Hou, and L. Wang, Biomimetic architected materials with improved dynamic performance, J. Mech. Phys. Solids 125, 178 (2019).

    Article  Google Scholar 

  17. Z. Liu, M. A. Meyers, Z. Zhang, and R. O. Ritchie, Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications, Prog. Mater. Sci. 88, 467 (2017).

    Article  Google Scholar 

  18. E. C. N. Silva, M. C. Walters, and G. H. Paulino, Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials, J Mater Sci. 41, 6991 (2006).

    Article  Google Scholar 

  19. M. A. Kasapi, J. M. Gosline, Design complexity and fracture control in the equine hoof wall, J. Exper. Biol. 200, 1639 (1997).

    Article  Google Scholar 

  20. S. F. Khosroshahi, S. A. Tsampas, and U. Galvanetto, Feasibility study on the use of a hierarchical lattice architecture for helmet liners, Mater. Today Commun. 14, 312 (2018).

    Article  Google Scholar 

  21. Y. Wang, S. Arabnejad, M. Tanzer, and D. Pasini, Hip implant design with three-dimensional porous architecture of optimized graded density, J. Mech. Des. 140, 111406 (2018).

    Article  Google Scholar 

  22. G. Totaro, and Z. Gürdal, Optimal design of composite lattice shell structures for aerospace applications, Aerospace Sci. Tech. 13, 157 (2009).

    Article  Google Scholar 

  23. K. B. Hazlehurst, C. J. Wang, and M. Stanford, An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting, Mater. Des. 60, 177 (2014).

    Article  Google Scholar 

  24. A. Seharing, A. H. Azman, and S. Abdullah, A review on integration of lightweight gradient lattice structures in additive manufacturing parts, Adv. Mech. Eng. 12, 168781402091695 (2020).

    Article  Google Scholar 

  25. S. Y. Choy, C. N. Sun, K. F. Leong, and J. Wei, Compressive properties of functionally graded lattice structures manufactured by selective laser melting, Mater. Des. 131, 112 (2017).

    Article  Google Scholar 

  26. S. R. G. Bates, I. R. Farrow, and R. S. Trask, Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities, Mater. Des. 162, 130 (2019).

    Article  Google Scholar 

  27. N. Gupta, A functionally graded syntactic foam material for high energy absorption under compression, Mater. Lett. 61, 979 (2007).

    Article  Google Scholar 

  28. I. Maskery, A. Hussey, A. Panesar, A. Aremu, C. Tuck, I. Ashcroft, and R. Hague, An investigation into reinforced and functionally graded lattice structures, J. Cell. Plast. 53, 151 (2017).

    Article  Google Scholar 

  29. D. S. J. Al-Saedi, S. H. Masood, M. Faizan-Ur-Rab, A. Alomarah, and P. Ponnusamy, Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM, Mater. Des. 144, 32 (2018).

    Article  Google Scholar 

  30. H. Chung, and S. Das, Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering, Mater. Sci. Eng.-A 487, 251 (2008).

    Article  Google Scholar 

  31. F. Liu, Z. Mao, P. Zhang, D. Z. Zhang, J. Jiang, and Z. Ma, Functionally graded porous scaffolds in multiple patterns: new design method, physical and mechanical properties, Mater. Des. 160, 849 (2018).

    Article  Google Scholar 

  32. L. Bai, C. Yi, X. Chen, Y. Sun, and J. Zhang, Effective design of the graded strut of BCC lattice structure for improving mechanical properties, Materials 12, 2192 (2019).

    Article  Google Scholar 

  33. W. Hou, X. Yang, W. Zhang, and Y. Xia, Design of energy-dissipating structure with functionally graded auxetic cellular material, Int. J. Crashworthiness 23, 366 (2018).

    Article  Google Scholar 

  34. Z. Zhang, H. Lei, M. Xu, J. Hua, C. Li, and D. Fang, Out-of-plane compressive performance and energy absorption of multi-layer graded sinusoidal corrugated sandwich panels, Mater. Des. 178, 107858 (2019).

    Article  Google Scholar 

  35. H. Zhou, M. Zhao, Z. Ma, D. Z. Zhang, and G. Fu, Sheet and network based functionally graded lattice structures manufactured by selective laser melting: design, mechanical properties, and simulation, Int. J. Mech. Sci. 175, 105480 (2020).

    Article  Google Scholar 

  36. S. Li, S. Zhao, W. Hou, C. Teng, Y. Hao, Y. Li, R. Yang, and R. D. K. Misra, Functionally graded Ti-6Al-4V meshes with high strength and energy absorption, Adv. Eng. Mater. 18, 34 (2016).

    Article  Google Scholar 

  37. M. Afshar, A. P. Anaraki, H. Montazerian, and J. Kadkhodapour, Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures, J. Mech. Behav. BioMed. Mater. 62, 481 (2016).

    Article  Google Scholar 

  38. W. van Grunsven, E. Hernandez-Nava, G. Reilly, and R. Goodall, Fabrication and mechanical characterisation of titanium lattices with graded porosity, Metals 4, 401 (2014).

    Article  Google Scholar 

  39. S. Zhao, S. J. Li, S. G. Wang, W. T. Hou, Y. Li, L. C. Zhang, Y. L. Hao, R. Yang, R. D. K. Misra, and L. E. Murr, Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting, Acta Mater. 150, 1 (2018).

    Article  Google Scholar 

  40. S. A. M. Tofail, E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Mater. Today 21, 22 (2018).

    Article  Google Scholar 

  41. Z. Dong, Y. Liu, W. Li, and J. Liang, Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices, J. Alloys Compd. 791, 490 (2019).

    Article  Google Scholar 

  42. Z. Dong, Y. Li, T. Zhao, W. Wu, D. Xiao, and J. Liang, Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb, Mater. Des. 182, 108036 (2019).

    Article  Google Scholar 

  43. I. Maskery, N. T. Aboulkhair, A. O. Aremu, C. J. Tuck, I. A. Ashcroft, R. D. Wildman, and R. J. M. Hague, A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting, Mater. Sci. Eng.-A 670, 264 (2016).

    Article  Google Scholar 

  44. ASTM, E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, (2016).

    Google Scholar 

  45. Q. M. Li, I. Magkiriadis, and J. J. Harrigan, Compressive strain at the onset of densification of cellular solids, J. Cell. Plast. 42, 371 (2006).

    Article  Google Scholar 

  46. M. Vural, and G. Ravichandran, Microstructural aspects and modeling of failure in naturally occurring porous composites, Mech. Mater. 35, 523 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglei Zeng  (曾庆磊) or Jun Liang  (梁军).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11972049 and 12002050), National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact (Grant No. 6142902200401), and Opening Fund of State Key Laboratory of Nonlinear Mechanics.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Zeng, Q., Wang, J. et al. Compressive properties and energy absorption of BCC lattice structures with bio-inspired gradient design. Acta Mech. Sin. 38, 421345 (2022). https://doi.org/10.1007/s10409-021-09013-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09013-3

Keywords

Navigation