Skip to main content
Log in

Wave propagation in graphene reinforced piezoelectric sandwich nanoplates via high-order nonlocal strain gradient theory

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Αn analytical method is developed to explore the wave propagation characteristics of piezoelectric sandwich nanoplates in the present work. The sandwich nanoplates are composed of a graphene reinforced composite core layer with two piezoelectric surface layers exposed to electric field. The material properties of the nanocomposite layer are given by the Halpin–Tsai model and mixture’s rule. The Euler–Lagrange equation of the nanoplates is obtained by Hamilton's principle and first-order shear deformation theory. Then, combining the high-order nonlocal strain gradient theory with the hygrothermal constitutive relationship of composite nanoplates, the nonlocal governing equations are presented. Finally, numerical studies are conducted to demonstrate the influences of scale parameters, applied external voltage, temperature variation, moisture variation, graphene size, and weight fraction on wave frequency. The results reveal that low-order and high-order nonlocal parameters and length scale parameters have different effects on wave frequency. The wave frequency can be reduced by increasing temperature and the thickness of graphene. This could facilitate the investigation of the dynamic properties of graphene nanocomposite structures.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wei, G., Jin, Y., Wu, L.: Geometric and material nonlinearities of sandwich beams under static loads. Acta Mech. Sin. 36, 97–106 (2020)

    Article  MathSciNet  Google Scholar 

  2. Saadatmand, M., Shooshtari, A.: Nonlinear vibration analysis of a circular micro-plate in two-sided nems/mems capacitive system by using harmonic balance method. Acta Mech. Sin. 35(1), 129–143 (2019)

    Article  MathSciNet  Google Scholar 

  3. Tang, W., Zhang, J., Wu, J., et al.: Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites. Acta Mech. Sin. 36, 855–865 (2020)

    Article  Google Scholar 

  4. Wang, Y., Xie, K., Shi, C., et al.: Nonlinear bending of axially functionally graded microbeams reinforced by graphene nanoplatelets in thermal environments. Mater. Res. Express. 6, 1–15 (2019)

    Google Scholar 

  5. Sobhy, M.: Differential quadrature method for magneto-hygrothermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory. J. Sandw. Struct. Mater. 23(5), 1662–1700 (2020)

  6. Lei, Z., Su, Q., Zeng, H., et al.: Parametric studies on buckling behavior of functionally graded graphene-reinforced composites laminated plates in thermal environment. Compos. Struct. 202, 695–709 (2018)

    Article  Google Scholar 

  7. Ahmad, F., Reza, K.: Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates. Int. J. Mech. Sci. 144, 788–799 (2018)

    Article  Google Scholar 

  8. Lin, H.G., Cao, D.Q., Xu, Y.Q.: Vibration, Buckling and Aeroelastic Analyses of Functionally Graded Multilayer Graphene-Nanoplateslets-Reinforced Composite Plates Embedded in Piezoelectric Layers. Int. J. Appl. Mech. 10, 1–29 (2018)

    Google Scholar 

  9. Wang, Y., Xie, K., Fu, T., et al.: Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses. Compos. Struct. 209, 928–939 (2019)

    Article  Google Scholar 

  10. Song, M.T., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)

    Article  Google Scholar 

  11. Wei, C.P., Xue, C.X.: Bending waves of a rectangular piezoelectric laminated beam. Acta. Mech. Sin. 36, 1099–1108 (2020)

    Article  MathSciNet  Google Scholar 

  12. Jia, N., Peng, Z., Li, J., et al.: Dispersive behavior of high frequency rayleigh waves propagating on an elastic half space. Acta Mech. Sin. 373–380 (2021)

  13. Wang, L., Xu, J., Wang, J., et al.: Nonlocal thermo-elastic constitutive relation of fibre-reinforced composites. Acta Mech. Sin. 36(1), 1–12 (2019)

    MathSciNet  Google Scholar 

  14. Wang, Y.Z., Li, F.M., Kishimoto, K.: Scale effects on the longitudinal wave propagation in nanoplates. Phys. E. 42(5), 1356–1360 (2010)

    Article  Google Scholar 

  15. Wang, Y.Z., Li, F.M., Kishimoto, K.: Flexural wave propagation in double-layered nanoplates with small scale effects. J. Appl. Phys. 108(6), 1899 (2010)

    Google Scholar 

  16. Wang, Y.Z., Li, R.M., Kishimoto, R.: Scale effects on flexural wave propagation in nanoplate embedded in elastic matrix with initial stress. Appl. Phys. A-Mater. Sci. Process. 99(4), 907–911 (2010)

    Article  Google Scholar 

  17. Ma, L.H., Ke, L.L., Wang, Y.Z., et al.: Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory. Int. J. Struct. Stab. Dyn. 18(4), 1–19 (2018)

    MathSciNet  Google Scholar 

  18. Hua, F., Liu, D.: On dissipative gradient effect in higher-order strain gradient plasticity: the modelling of surface passivation. Acta Mech. Sin. 36, 840–854 (2020)

    Article  MathSciNet  Google Scholar 

  19. Dario, D.D., Harm, A.: Stress gradient, strain gradient and inertia gradient beam theories for the simulation of flexural wave dispersion in carbon nanotubes. Compos. Pt. B-Eng. 153, 285–294 (2018)

    Article  Google Scholar 

  20. Zhu, G., Droz, C., Zine, A., et al.: Wave propagation analysis for a second strain gradient rod theory. Chin. J. Aeronaut. 33(10), 2563–2574 (2020)

    Article  Google Scholar 

  21. Liu, C., Yu, J., Xu, W., et al.: Theoretical study of elastic wave propagation through a functionally graded micro-structured plate base on the modified couple-stress theory. Meccanica 55, 1153–1167 (2020)

    Article  MathSciNet  Google Scholar 

  22. Liu, N., Fu, L.Y., Tang, G., et al.: Modified LSM for size-dependent wave propagation: comparison with modified couple stress theory. Acta Mech. 231(2), 1285–1304 (2020)

    Article  MathSciNet  Google Scholar 

  23. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids. 78, 298–313 (2015)

    Article  MathSciNet  Google Scholar 

  24. Karami, B., Shahsavari, D., Li, L.: Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory. Phys. E. 97, 317–327 (2018)

    Article  Google Scholar 

  25. Karami, B., Janghorban, M., Tounsi, A.: Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Structures 129, 251–264 (2018)

    Article  Google Scholar 

  26. Safarpour, H., Ali Ghanizadeh, S., Habibi, M.: Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory. Eur. Phys. J. Plus. 133(532), 1–17 (2018)

    Google Scholar 

  27. Habibi, M., Mohammadgholiha, M., Safarpour, H.: Wave propagation characteristics of the electrically GPL-reinforced nanocomposite cylindrical shell. J. Braz. Soc. Mech. Sci. Eng. 41(5), 1–10 (2019)

    Article  Google Scholar 

  28. Ma, L.H., Ke, L.L., Reddy, J.N., et al.: Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory. Compos. Struct. 199, 10–23 (2018)

    Article  Google Scholar 

  29. Masoumi, A., Amiri, A., Talebitooti, R.: Flexoelectric effects on wave propagation responses of piezoelectric nanobeams via nonlocal strain gradient higher order beam model. Mater. Res. Express. 6(10), 1–17 (2019)

    Article  Google Scholar 

  30. Ebrahimi, F., Dabbagh, A.: Wave dispersion characteristics of embedded graphene platelets-reinforced composite microplates. Eur. Phys. J. Plus. 133(151), 1–13 (2018)

    Google Scholar 

  31. Malikan, M., Nguyen, V.B.: Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory. Phys. E. 102, 8–28 (2018)

    Article  Google Scholar 

  32. Jafari, E., Fakoor, M., Karvand, E.: Hygrothermal free vibration of multiple magneto-electro-elastic nanoplate system via higher-order nonlocal strain gradient theory. Appl. Phys. A-Mater. Sci. Process. 125(607), 1–19 (2019)

    Google Scholar 

  33. Ghahnavieh, S., Hosseini-Hashemi, S., Rajabi, K., et al.: A higher-order nonlocal strain gradient mass sensor based on vibrating heterogeneous magneto-electro-elastic nanoplate via third-order shear deformation theory. Eur. Phys. J. Plus. 133(518), 1–21 (2018)

    Google Scholar 

  34. Nematollahi, M.S., Mohammadi, H.: Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory. Int. J. Mech. Sci. 156, 31–45 (2019)

    Article  Google Scholar 

  35. Nematollahi, M.S., Mohammadi, H., Nematollahi, M.A.: Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach. Superlattices Microstruct. 111, 944–959 (2017)

    Article  Google Scholar 

  36. Pavlovic, I.R., Pavlovic, R., Janevski, G.: Mathematical modeling and stochastic stability analysis of viscoelastic nanobeams using higher-order nonlocal strain gradient theory. Arch. Mech. 71(2), 137–153 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Zenkour, A.M., Sobhy, M.: Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin-Voigt viscoelastic nanoplate embedded in a viscoelastic medium. Acta Mech. 229, 3–19 (2018)

    Article  MathSciNet  Google Scholar 

  38. Zenkour, A.M.: Exact solution of thermal stress problem of an inhomogeneous hygrothermal piezoelectric hollow cylinder. Appl. Math. Model. 38(24), 6133–6143 (2014)

    Article  MathSciNet  Google Scholar 

  39. Arabjamaloei, Z., Mofidi, M., Hosseini, M., et al.: Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment. Eur. Phys. J. Plus. 134(11), 556 (2019)

    Article  Google Scholar 

  40. Dat, N.D., Quan, T.Q., Mahesh, V., et al.: Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment. Int. J. Mech. Sci. 186, 105906 (2020)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grants 11502218, 11672252, and 11602204) and the Fundamental Research Funds for the Central Universities of China (Grant 2682020ZT106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Liu or Huoming Shen.

Additional information

Executive Editor: Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Liu, J., Wang, Y. et al. Wave propagation in graphene reinforced piezoelectric sandwich nanoplates via high-order nonlocal strain gradient theory. Acta Mech. Sin. 37, 1446–1456 (2021). https://doi.org/10.1007/s10409-021-01113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01113-y

Keywords

Navigation