Skip to main content
Log in

Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations of the titanium-graphene nanocomposites (TiGNCs) under uniaxial tension are carried out to investigate the mechanical properties and reinforcement mechanism of graphene in composites. It is found that introduction of mechanically robust graphene limits the strain-induced dislocation and amorphization and thereby highly improves the mechanical properties of metallic titanium that are greatly affected by the crystal stacking orientation of graphene and titanium layers. The thickness of titanium layers, interface interaction and working temperature play an important role in the mechanical strength and elastic moduli of composites. The results show the mechanical properties of TiGNCs are monotonically enhanced with reduction of the titanium layer thickness and working temperature, and the Young’s modulus obtained by MD simulation are higher than that predicted by the rule of mixture (ROM) due to consideration of interfacial interaction in computational calculation. In addition, once the critical thickness of titanium layer is reached, graphene wrinkles are induced in composites because of Poisson’s effect induced large lateral compression stress in the interface region. This study provides helpful insights into fundamental understanding reinforcing mechanism of graphene and ultimately contribute to the optimal design and performance of mechanically robust graphene-based metallic composites.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stankovich, S., Dommett, G.H.B., Kohlhaas, K.M., et al.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Google Scholar 

  2. Novoselov, K.S., Fal′ko, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192–200 (2012)

    Google Scholar 

  3. Xu, X., Rong, D., Lim, C.W., et al.: An analytical symplectic approach to the vibration analysis of orthotropic graphene sheets. Acta Mech. Sin. 33, 912–925 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Pan, D., Li, Y., Wang, T.-C., et al.: Bending-induced extension in two-dimensional crystals. Acta Mech. Sin. 33, 71–76 (2017)

    Google Scholar 

  5. Meng, X.-H., Li, M., Kang, Z., et al.: Folding of multi-layer graphene sheets induced by van der Waals interaction. Acta Mech. Sin. 30, 410–417 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Zhao, Y., Dong, S., Yu, P., et al.: Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets. Acta Mech. Sin. 34, 542–548 (2018)

    Google Scholar 

  7. Chu, K., Wang, X., Li, Y., et al.: Thermal properties of graphene/metal composites with aligned graphene. Mater. Des. 140, 85–94 (2018)

    Google Scholar 

  8. Wang, S., Han, S., Xin, G., et al.: High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites. Mater. Des. 139, 181–187 (2018)

    Google Scholar 

  9. Khalil, I., Rahmati, S., Muhd Julkapli, N., et al.: Graphene metal nanocomposites—Recent progress in electrochemical biosensing applications. J. Ind. Eng. Chem. 59, 425–439 (2018)

    Google Scholar 

  10. Montazeri, A., Mobarghei, A.: Nanotribological behavior analysis of graphene/metal nanocomposites via MD simulations: new concepts and underlying mechanisms. J. Phys. Chem. Solids 115, 49–58 (2018)

    Google Scholar 

  11. Hynes Navasingh, R.J., Kumar, R., Marimuthu, K., et al.: Graphene-based nano metal matrix composites: a review. In: Nanocarbon and Its Composites, Elsevier. 153–170 (2019)

  12. Bashirvand, S., Montazeri, A.: New aspects on the metal reinforcement by carbon nanofillers: a molecular dynamics study. Mater. Des. 91, 306–313 (2016)

    Google Scholar 

  13. Guo, S.-J., Yang, Q.-S., He, X.Q., et al.: Modeling of interface cracking in copper–graphite composites by MD and CFE method. Compos. B Eng. 58, 586–592 (2014)

    Google Scholar 

  14. Hwang, J., Yoon, T., Jin, S.H., et al.: Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater. 25, 6724–6729 (2013)

    Google Scholar 

  15. Song, Y., Chen, Y., Liu, W.W., et al.: Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Mater. Des. 109, 256–263 (2016)

    Google Scholar 

  16. Khan, M.E., Khan, M.M., Cho, M.H.: Recent progress of metal–graphene nanostructures in photocatalysis. Nanoscale 10, 9427–9440 (2018)

    Google Scholar 

  17. Peng, Y., Lin, D., Justin Gooding, J., et al.: Flexible fiber-shaped non-enzymatic sensors with a graphene-metal heterostructure based on graphene fibres decorated with gold nanosheets. Carbon 136, 329–336 (2018)

    Google Scholar 

  18. Bhattacharya, A., Bhattacharya, S., Majumder, C., et al.: Transition-metal decoration enhanced room-temperature hydrogen storage in a defect-modulated graphene sheet. J. Phys. Chem. C 114, 10297–10301 (2010)

    Google Scholar 

  19. Leong, W.S., Gong, H., Thong, J.T.L.: Low-contact-resistance graphene devices with nickel-etched-graphene contacts. ACS Nano 8, 994–1001 (2014)

    Google Scholar 

  20. Bartolucci, S.F., Paras, J., Rafiee, M.A., et al.: Graphene–aluminum nanocomposites. Mater. Sci. Eng. A 528, 7933–7937 (2011)

    Google Scholar 

  21. Bastwros, M., Kim, G.-Y., Zhu, C., et al.: Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. B Eng. 60, 111–118 (2014)

    Google Scholar 

  22. Shin, S.E., Choi, H.J., Shin, J.H., et al.: Strengthening behavior of few-layered graphene/aluminum composites. Carbon 82, 143–151 (2015)

    Google Scholar 

  23. Yi, C., Chen, X., Gou, F., et al.: Direct measurements of the mechanical strength of carbon nanotube-Aluminum interfaces. Carbon 125, 93–102 (2017)

    Google Scholar 

  24. Yi, C., Bagchi, S., Dmuchowski, C.M., et al.: Direct nanomechanical characterization of carbon nanotubes-titanium interfaces. Carbon 132, 548–555 (2018)

    Google Scholar 

  25. Rezaei, R.: Tensile mechanical characteristics and deformation mechanism of metal-graphene nanolayered composites. Comput. Mater. Sci. 151, 181–188 (2018)

    Google Scholar 

  26. Weng, S., Ning, H., Fu, T., et al.: Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression. Sci. Rep. 8, 3089 (2018)

    Google Scholar 

  27. Liu, X., Wang, F., Wang, W., et al.: Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation. Carbon 107, 680–688 (2016)

    Google Scholar 

  28. Zhang, H., Li, X., Su, J., et al.: Modulation of columnar crystals of magnetron sputtered Ti thin films. Thin Solid Films 689, 137512 (2019)

    Google Scholar 

  29. Geetha, M., Singh, A.K., Asokamani, R., et al.: Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Prog. Mater. Sci. 54, 397–425 (2009)

    Google Scholar 

  30. Kuzumaki, T., Ujiie, O., Ichinose, H., et al.: Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite. Adv. Eng. Mater. 2, 416–418 (2000)

    Google Scholar 

  31. Fonseca, A.F., Liang, T., Zhang, D., et al.: Graphene–titanium interfaces from molecular dynamics simulations. ACS Appl. Mater. Interfaces 9, 33288–33297 (2017)

    Google Scholar 

  32. Fonseca, A.F., Liang, T., Zhang, D., et al.: Titanium-carbide formation at defective curved graphene-titanium interfaces. MRS Adv. 3, 457–462 (2018)

    Google Scholar 

  33. Khomyakov, P.A., Giovannetti, G., Rusu, P.C., et al.: First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 79, 195425 (2009)

    Google Scholar 

  34. Chen, L., Luo, J., Wang, Q., et al.: First-principles study of cohesion strength and stability of titanium–carbon interfaces using vdW interaction. J. Phys. Condens. Matter 32, 145001 (2020)

    Google Scholar 

  35. Ackland, G.J.: Theoretical study of titanium surfaces and defects with a new many-body potential. Philos. Mag. A 66, 917–932 (1992)

    Google Scholar 

  36. Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)

    Google Scholar 

  37. Bridier, F., Villechaise, P., Mendez, J.: Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation. Acta Mater. 53, 555–567 (2005)

    Google Scholar 

  38. Pei, Q.-X., Zhang, Y.-W., Shenoy, V.B.: Mechanical properties of methyl functionalized graphene: a molecular dynamics study. Nanotechnology 21, 115709 (2010)

    Google Scholar 

  39. Shenderova, O.A., Brenner, D.W., Omeltchenko, A., et al.: Atomistic modeling of the fracture of polycrystalline diamond. Phys. Rev. B 61, 3877–3888 (2000)

    Google Scholar 

  40. Zhao, H., Aluru, N.R.: Temperature and strain-rate dependent fracture strength of graphene. J. Appl. Phys. 108, 064321 (2010)

    Google Scholar 

  41. Duan, K., Li, L., Hu, Y., et al.: Interface mechanical properties of graphene reinforced copper nanocomposites. Mater. Res. Express. 4, 115020 (2017)

    Google Scholar 

  42. Piątek, A., Nowak, R., Gburski, Z.: A titanium-decorated fullerene cluster—a molecular dynamics simulation. In: Perspectives of Nanoscience and Nanotechnology, Trans Tech Publications Ltd. pp. 109–116 (2008)

  43. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995)

    MATH  Google Scholar 

  44. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Google Scholar 

  45. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Google Scholar 

  46. Hoover, W.G.: Constant-pressure equations of motion. Phys. Rev. A 34, 2499–2500 (1986)

    Google Scholar 

  47. Memarian, F., Fereidoon, A., Darvish Ganji, M.: Graphene Young’s modulus: molecular mechanics and DFT treatments. Superlattices Microstruct. 85, 348–356 (2015)

    Google Scholar 

  48. Zhang, J.Y., Zhang, X., Liu, G., et al.: Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films. Scripta Mater. 63, 101–104 (2010)

    Google Scholar 

  49. Duan, K., Zhu, F., Tang, K., et al.: Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites. Comput. Mater. Sci. 117, 294–299 (2016)

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grants U1737106, 51705411, 11772278 and 11502221), the Jiangxi Provincial Outstanding Young Talents Program (Grant 20192BCBL23029), the Fundamental Research Funds for the Central Universities (Xiamen University: Grants 20720180014, 20720180018 and 20720160088), Shaanxi Provincial Natural Science Foundation (Grant 2018JM5022), Fujian Provincial Department of Science & Technology (Grant 2017J05028), “111” Project (Grant B16029) and the 1000 Talents Program from Xiamen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianyang Wu or Xiaoming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Zhang, J., Wu, J. et al. Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites. Acta Mech. Sin. 36, 855–865 (2020). https://doi.org/10.1007/s10409-020-00968-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00968-x

Keywords

Navigation