Skip to main content
Log in

Computational study of planar shock wave interacting with elliptical heavy gas bubble

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

High-precision numerical methods are utilized to study the shock waves interacting with an elliptical heavy bubble. The influence of different bubble gases (SF\(_6\) and R22) and shock intensities (\(Ma=1.21\) and \(Ma=2.1\)) is analyzed qualitatively and quantitatively. The results show that the focusing position is farther from the right bubble interface in the SF\(_6\) bubble (case 1) than in the R22 bubble (case 2) when \(Ma=1.21\); thus, case 2 exhibits an outward jet structure, while case 1 does not. When \(Ma=2.1\) (case 3), the shock wave propagates faster, and the shock focusing is nearer to the right bubble interface. Finally, outward jet structures form on the bubble interfaces. The maximum values of density and pressure of shock focusing are different in the three cases, which imply that different gas densities and shock intensities significantly affect the shock–bubble interaction. The effective bubble volume and gases mixing degree are both smaller in case 2 than in case 1, but the trends over time are essentially the same. The increased shock intensity in case 3 leads to a smaller effective bubble volume than in case 1, but a much greater gases mixing degree. In all three cases, the compression term plays a more important role in the vorticity development than the other terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pan, Z.H., Chen, K.P., Qi, J., et al.: The propagation characteristics of curved detonation wave: Experiments in helical channels. Proc. Combust. Inst. 37, 3585–3592 (2019)

    Article  Google Scholar 

  2. Pan, Z.H., Qi, J., Pan, J.F., et al.: Fabrication of a helical detonation channel: Effect of initial pressure on the detonation propagation modes of ethylene/oxygen mixtures. Combust. Flame 192, 1–9 (2018)

    Article  Google Scholar 

  3. Zhu, Y.J., Pan, Z.H., Zhang, P.G., et al.: Stable detonation characteristics of premixed C\(_2\)H\(_4\)/O\(_2\) gas in narrow gaps. Exp. Fluids 58, 1–6 (2017)

    Article  Google Scholar 

  4. Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)

    Article  Google Scholar 

  5. Layes, G., Jourdan, G., Houas, L.: Experimental investigation of the shock wave interaction with a spherical gas inhomogeneity. Phys. Fluids 17, 028103 (2005)

    Article  Google Scholar 

  6. Layes, G., Metayer, O.L.: Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion. Phys. Fluids 19(4), 042105 (2007)

    Article  Google Scholar 

  7. Layes, G., Jourdan, G., Houas, L.: Experimental study on a plane shock wave accelerating a gas bubble. Phys. Fluids 21(7), 074102 (2009)

    Article  Google Scholar 

  8. Zhai, Z.G., Si, T., Luo, X.S., et al.: On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys. Fluids 23(8), 084104 (2011)

    Article  Google Scholar 

  9. Si, T., Zhai, Z.G., Yang, J.M., et al.: Experimental investigation of reshocked spherical gas interfaces. Phys. Fluids 24(5), 054101 (2012)

    Article  Google Scholar 

  10. Zhu, Y.J., Yu, L., Pan, J.F., et al.: Jet formation of SF\(_6\) bubble induced by incident and reflected shock waves. Phys. Fluids 29, 126105 (2017)

    Article  Google Scholar 

  11. Zhu, Y.J., Yang, Z.W., Pan, Z.H., et al.: Numerical investigation of shock-SF\(_6\) bubble interaction with different mach numbers. Comput. Fluids 177, 78–86 (2018)

    Article  MathSciNet  Google Scholar 

  12. Zhu, Y.J., Yang, Z.W., Luo, K.H., et al.: Numerical investigation of planar shock wave impinging on spherical gas bubble with different densities. Phys. Fluids 31, 056101 (2019)

    Article  Google Scholar 

  13. Zhu, Y.J., Gao, L.K., Yang, Z.W.: Sulfur hexauoride bubble evolution in shock accelerated flow with a transverse density gradient. Phys. Fluids 32, 026101 (2020)

    Article  Google Scholar 

  14. Luo, X.S., Wang, M.H., Si, T., et al.: On the interaction of a planar shock with an SF\(_6\) polygon. J. Fluid Mech. 773, 366–394 (2015)

    Article  Google Scholar 

  15. Igra, D., Igra, O.: Numerical investigation of the interaction between a planar shock wave with square and triangular bubbles containing different gases. Phys. Fluids 30, 056104 (2018)

    Article  Google Scholar 

  16. Zheng, C., Zhang, H.H., Chen, Z.H., et al.: Interaction of cylindrical converging shocks with an equilateral triangular SF\(_6\) cylinder. Phys. Fluids 31, 086104 (2019)

    Article  Google Scholar 

  17. Fan, E., Guan, B., Wen, C.Y., et al.: Numerical study on the jet formation of simple-geometry heavy gas inhomogeneities. Phys. Fluids 31, 026103 (2019)

    Article  Google Scholar 

  18. Ray, J., Samtaney, R., Norman, J.Z.: Shock interactions with heavy gaseous elliptic cylinders: Two leeward-side shock competition modes and a heuristic model for interfacial circulation deposition at early times. Phys. Fluids 12, 707 (2000)

    Article  Google Scholar 

  19. Zou, L.Y., Liu, C.L., Tan, D.W., et al.: On interaction of shock wave with elliptic gas cylinder. J. Visual. 13, 347–353 (2010)

  20. Zou, L.Y., Liao, S.F., Liu, C.L., et al.: Aspect ratio effect on shock-accelerated elliptic gas cylinders. Phys. Fluids 28, 036101 (2016)

  21. Georgievskiy, P.Y., Levin, V.A., Sutyrin, O.G.: Interaction of a shock with elliptical gas bubbles. Shock Waves 25, 357–369 (2015)

    Article  Google Scholar 

  22. Sembian, S., Liverts, M., Apazidis, N.: Plane blast wave interaction with an elongated straight and inclined heat-generated inhomogeneity. J. Fluid Mech. 851, 245–267 (2018)

    Article  MathSciNet  Google Scholar 

  23. Li, D.D., Wang, G., Guan, B.: On the circulation prediction of shock-accelerated elliptical heavy gas cylinders. Phys. Fluids 31, 056104 (2019)

    Article  Google Scholar 

  24. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  25. Chen, X., Dong, G., Li, B.M.: Numerical study of three-dimensional developments of premixed flame induced by multiple shock waves. Acta. Mech. Sin. 34, 1035–1047 (2018)

    Article  MathSciNet  Google Scholar 

  26. Winkler, K.A., Chalmers, J.W., Hodson, S.W., et al.: A numerical laboratory. Phys. Today 40(10), 28–37 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11872193), and the Youth Talent Cultivation Plan of Jiangsu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejin Zhu.

Additional information

Communicated by Executive Editor: Jianqiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhu, Y. Computational study of planar shock wave interacting with elliptical heavy gas bubble. Acta Mech. Sin. 37, 1264–1277 (2021). https://doi.org/10.1007/s10409-021-01085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01085-z

Keywords

Navigation