Skip to main content
Log in

Interaction of a shock with elliptical gas bubbles

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The interaction of a shock with spherical and elliptical bubbles of light or heavy gas is numerically studied using the axisymmetric Euler equations. A model with a single heat capacity ratio \(\gamma \) is implemented, where bubbles are modeled by areas of the same gas with lower or higher density. Details of the general shock refraction patterns—diverging and converging—are described. The formation and development of secondary, focusing shocks are discussed. A computational parameter study for different Atwood numbers \(\mathrm{At}\, (\hbox {range } -0.54 \le \mathrm{At} \le 0.5)\), shock strengths \(M\, (\hbox {range }1.2 \le M \le 3)\), where \(M\) is the Mach number, and bubble geometries is performed. A basic classification for the shock focusing (cumulation) regimes is suggested, with the division of the internal, external and transitional focusing regimes determined by the position of the shock focusing point relative to the bubble. It is shown that the focusing pattern is governed not only by the Atwood number but also heavily by the Mach number and bubble shape. The qualitative dependence of cumulative intensity on bubble geometry is determined. The theoretical possibility of realizing an extremely intense shock collapse with a relatively small variation in bubble shape is demonstrated for the heavy-bubble scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Rudinger, G., Somers, L.M.: Behavior of small regions of different gases carried in accelerated gas flows. J. Fluid Mech. 7, 161–176 (1960)

    Article  MATH  Google Scholar 

  2. Haas, J.-F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)

  3. Layes, G., Jourdan, G., Houas, L.: Distortion of a spherical gaseous interface accelerated by a plane shockwave. Phys. Rev. Lett. 11, 174502 (2003)

    Article  Google Scholar 

  4. Layes, G., Jourdan, G., Houas, L.: Experimental study on a plane shock wave accelerating a gas bubble. Phys. Fluids 21, 074102 (2009)

    Article  Google Scholar 

  5. Ranjan, D., Niederhaus, J.H.J., Oakley, J.G., Anderson, M.H., Bonazza, R., Greenough, J.A.: Shock–bubble interactions: features of divergent shock-refraction geometry observed in experiments and simulations. Phys. Fluids 20, 036101 (2008)

    Article  Google Scholar 

  6. Ranjan, D., Niederhaus, J.H.J., Oakley, J.G., Anderson, M.H., Greenough, J.A., Bonazza, R.: Experimental and numerical investigation of shock-induced distortion of a spherical gas inhomogeneity. Phys. Scr. T132, 014020 (2008)

    Article  Google Scholar 

  7. Haehn, N., Weber, C., Oakley, J., Anderson, M., Ranjan, D., Bonazza, R.: Experimental study of the shock–bubble interaction with reshock. Shock Waves 22, 47–56 (2012)

    Article  Google Scholar 

  8. Haehn, N., Ranjan, D., Weber, C., Oakley, J., Rothamer, D., Bonazza, R.: Reacting shock bubble interaction. Combus. Flame 159, 1339–1350 (2012)

    Article  Google Scholar 

  9. Picone, J.M., Boris, J.P.: Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 23–51 (1988)

    Article  Google Scholar 

  10. Ray, J., Samtaney, R., Zabusky, N.J.: Shock interactions with heavy gaseous elliptic cylinders: two leeward-side shock competition modes and a heuristic model for interfacial circulation deposition at early times. Phys. Fluids 12(3), 707–716 (2000)

    Article  MATH  Google Scholar 

  11. Fan, M., Zhai, Z., Si, T., Luo, X., Zou, L., Tan, D.: Numerical study on the evolution of the shock-accelerated \(\text{ SF }_{6}\) interface: influence of the interface shape. China Phys. Mech. Astron. 55, 284–296 (2012)

    Article  Google Scholar 

  12. Ranjan, D., Oakley, J., Bonazza, R.: Shock–bubble interactions. Annu. Rev. Fluid Mech. 43(1), 117–140 (2011)

    Article  MathSciNet  Google Scholar 

  13. Georgievskii, PYu., Levin, V.A.: Unsteady interaction of a sphere with atmospheric temperature inhomogeneity at supersonic speed. Fluid Dyn. 28(4), 568–574 (1993)

    Article  Google Scholar 

  14. Bagabir, A., Drikakis, D.: Mach number effects on shock–bubble interaction. Shock Waves 11, 209–218 (2001)

    Article  MATH  Google Scholar 

  15. Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., Ranjan, D., Anderson, M.H., Bonazza, R.A.: Computational parameter study for the three-dimensional shock–bubble interaction. J. Fluid Mech. 594, 85–124 (2008)

    MATH  Google Scholar 

  16. Zhu, Y., Dong, G., Liu, Y.: Three-dimensional numerical simulations of spherical flame evolutions in shock and reshock accelerated flows. Combust. Sci. Technol. 185, 1415–1440 (2013)

    Article  Google Scholar 

  17. Richtmyer, R.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960)

    Article  MathSciNet  Google Scholar 

  18. Meshkov, Y.: Instability of shock wave accelerated between two gases. In: NASA Technical Transmission NASA TT F-13074 (1970)

  19. Giordano, J., Burtschell, Y.: Richtmyer–Meshkov instability induced by shock–bubble interaction: numerical and analytical studies with experimental validation. Phys. Fluids 18, 036102 (2006)

    Article  Google Scholar 

  20. Georgievskiy, P., Levin, V., Sutyrin, O.: Cumulation effects for interaction of a shock with elliptic gas bubbles. In: Bonazza, R., Ranjan, D. (eds.) Proceedings of the 29th International Symposium Shock Waves (in press) (2015)

  21. Georgievskii, PYu., Levin, V.A., Sutyrin, O.G.: Cumulation effect upon the interaction between a shock and a local gas region with elevated or lowered density. Fluid Dyn. 46(6), 967–974 (2011)

  22. Samtaney, R., Zabusky, N.J.: Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 45–78 (1994)

  23. MacCormack, R.W.: The effect of viscosity in hypervelocity impact cratering. In: AIAA Paper 354 (1969)

  24. Zhmakin, A.I., Fursenko, A.A.: On a monotonic shock-capturing difference scheme. U.S.S.R. Comput. Math. Math. Phys. 20(4), 218–227 (1981)

    Article  MathSciNet  Google Scholar 

  25. Georgievskii, PYu., Levin, V.A., Sutyrin, O.G.: Two-dimensional self-similar flows generated by the interaction between a shock and low-density gas regions. Fluid Dyn. 45(2), 281–288 (2010)

    Article  Google Scholar 

  26. Tomkins, C., Kumar, S., Orlicz, G., Prestridge, K.: An experimental investigation of mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131–150 (2008)

  27. Samtaney, R., Pullin, D.I.: On initial-value and self-similar solutions of the compressible Euler equations. Phys. Fluids 8(10), 2650–2655 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Abd-el-Fattah, A., Henderson, L.: Shock waves at a slow–fast gas interface. J. Fluid Mech. 89(1), 79–95 (1978)

    Article  Google Scholar 

  29. Adelgren, R., Yan, H., Elliott, G., Knight, D., Beutner, T., Zheltovodov, A.: Control of Edney-IV interaction by pulsed laser energy deposition. AIAA J. 43(2), 256–269 (2005)

    Article  Google Scholar 

  30. Zheltovodov, A.A., Pimonov, E.A.: Numerical simulation of an energy deposition zone in quiescent air and in a supersonic flow under the conditions of interaction with a normal shock. Tech. Phys. 58(2), 170–184 (2013)

    Article  Google Scholar 

  31. Nourgaliev, R., Sushchikh, S., Dinh, T., Theofanous, T.: Shock wave refraction patterns at interfaces. Int. J. Multiph. Flow 31, 969–995 (2005)

    Article  MATH  Google Scholar 

  32. Witham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    Google Scholar 

Download references

Acknowledgments

The present study is financially supported by the Russian Science Foundation (Grant No. 14-11-00773) and Russian Foundation for Basic Research (Grant No. 14-01-00891).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Sutyrin.

Additional information

Communicated by R. Bonazza.

This paper is based on work that was presented at the 29th International Symposium on Shock Waves, Madison, Wisconsin, USA, July 14–19, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgievskiy , P.Y., Levin, V.A. & Sutyrin, O.G. Interaction of a shock with elliptical gas bubbles. Shock Waves 25, 357–369 (2015). https://doi.org/10.1007/s00193-015-0557-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0557-4

Keywords

Navigation