Skip to main content
Log in

Symplectic perturbation series methodology for non-conservative linear Hamiltonian system with damping

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, the symplectic perturbation series methodology of the non-conservative linear Hamiltonian system is presented for the structural dynamic response with damping. Firstly, the linear Hamiltonian system is briefly introduced and its conservation law is proved based on the properties of the exterior products. Then the symplectic perturbation series methodology is proposed to deal with the non-conservative linear Hamiltonian system and its conservation law is further proved. The structural dynamic response problem with eternal load and damping is transformed as the non-conservative linear Hamiltonian system and the symplectic difference schemes for the non-conservative linear Hamiltonian system are established. The applicability and validity of the proposed method are demonstrated by three engineering examples. The results demonstrate that the presented methodology is better than the traditional Runge–Kutta algorithm in the prediction of long-time structural dynamic response under the same time step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical methods of classical mechanics. Adv. Math. 49, 106–106 (1983)

    Google Scholar 

  2. Du, C.F., Zhang, D.G., Li, L., et al.: A node-based smoothed point interpolation method for dynamic analysis of rotating flexible beams. Acta. Mech. Sin. 34, 409–420 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer-Verlag, New York (1999)

    Book  MATH  Google Scholar 

  4. Ghasabi, S.A., Arbabtafti, M., Shahgholi, M.: Forced oscillations and stability analysis of a nonlinear micro-rotating shaft incorporating a non-classical theory. Acta. Mech. Sin. 34, 970–982 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wattanasakulpong, N., Chaikittiratana, A., Pornpeerakeat, S.: Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory. Acta. Mech. Sin. 34, 1124–1135 (2018)

    Article  MathSciNet  Google Scholar 

  6. Li, W., Yang, X.D., Zhang, W., et al.: Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities. Acta. Mech. Sin. 35, 879–893 (2019)

    Article  MathSciNet  Google Scholar 

  7. Jin, M.S., Chen, W., Song, H.W., et al.: A frequency-domain method for solving linear time delay systems with constant coefficients. Acta. Mech. Sin. 34, 781–791 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, C.S., Li, B.T.: An R(x)-orthonormal theory for the vibration performance of a non-smooth symmetric composite beam with complex interface. Acta. Mech. Sin. 35, 228–241 (2019)

    Article  MathSciNet  Google Scholar 

  9. Pan, Y.J., He, Y.S., Mikkola, A.: Accurate real-time truck simulation via semirecursive formulation and Adams-Bashforth-Moulton algorithm. Acta Mechanica Sinica, 641–652 (2019).

  10. Wei, S., Chen, S.Q., Dong, X.J., et al.: Parametric identification of time-varying systems from free vibration using intrinsic chirp component decomposition. Acta. Mech. Sin. 36, 188–205 (2020)

    Article  MathSciNet  Google Scholar 

  11. Feng, K., Qin, M.Z.: Symplectic Geometric Algorithms for Hamiltonian Systems. Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, Hangzhou and Springer-Verlag, Berlin Heidelberg (2010)

    Book  MATH  Google Scholar 

  12. Feng, K., Wu, H.M., Qing, M.Z., et al.: Construction of canonical difference schemes for Hamiltonian formalism via generating functions. J. Comput. Math. 7, 71–96 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Sanzserna, J.M.: Runge-kutta schemes for Hamiltonian systems. BIT Numer. Math. 28, 877–883 (1988)

    Article  MathSciNet  Google Scholar 

  14. Tang, Y.F.: The symplecticity of multi-step methods. Comput. Math. Appl. 25, 83–90 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bridges, T.J.: Multi-symplectic structures and wave propagation. Math. Proc. Cambridge Philos. Soc. 121, 147–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Reich, S.: Multi-Symplectic Runge-Kutta Collocation Methods for Hamiltonian Wave Equations. J. Comput. Phys. 157, 473–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, Z., Zhang, S.: A Meshless Symplectic Algorithm for multi-variate Hamiltonian PDEs with Radial Basis Approximation Engineering Analysis with Boundary Elements 50, 258–264 (2015)

    Google Scholar 

  18. Sun, Z.J., Gao, W.W.: A meshless scheme for Hamiltonian partial differential equations with conservation properties. Appl. Numer. Math. 119, 115–125 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qiu, Z.P., Jiang, N.: Comparative study of stochastic and interval non-homogeneous linear Hamiltonian systems and their applications. Chinese Journal of Theoretical and Applied Mechanics 52, 60–72 (2020)

    Google Scholar 

  20. Da Veiga, L.B., Lopez, L., Vacca, G.: Mimetic Finite Difference methods for Hamiltonian wave equations in 2D. Comput. Math. Appl. 74, 1123–1141 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bao, S.Y.: A general solution of free vibration for rectangular thin plates in Hamilton systems. Journal of Dynamics & Control 3, 10–16 (2005)

    Google Scholar 

  22. Zhong, Y.: Analytic free vibration solution of fully clamped rectangular thin plate. Chinese J. Appl. Mech. 28, 323–307 (2011)

    Google Scholar 

  23. Qin, Y.Y., Deng, Z.C., Hu, W.P.: Multi-Symplectic Analysis of Vibration of Centrosymmetric Thin Circular Plate under Impact Load. Journal of Northwestern Polytechnical University 31, 931–934 (2013)

    Google Scholar 

  24. Yao, W.A., Sui, Y.F.: Symplectic solution system for Reissner plate bending. Appl. Math. Mech. 25, 178–185 (2004)

    Article  MATH  Google Scholar 

  25. Bao, S.Y., Deng, Z.C.: Symplectic Solution Method for Mindin Middle Thich Plate. Acta Mech. Solida Sin. 26, 102–106 (2005)

    Google Scholar 

  26. Zhong, W.X., Yao, W.A., Zheng, C.L.: Analogy between Reissner plate bending and plane couple-stress. J. Dalian Univ. Tech. 42, 519–521 (2002)

    Google Scholar 

  27. Wang, Z.G., Tang, L.M.: Three-dimensional theory and Hamilton element method for analyzing composite Laminates. Acta Materiae Compositae Sinica 13, 111–117 (1996)

    Google Scholar 

  28. Xu, X.S., Jia, H.Z., Sun, F.M.: A method of symplectic eigensolutions in elastic transverse isotropy cylinders. J. Dalian Univ. Tech. 45, 617–624 (2005)

    Google Scholar 

  29. Zou, G.P.: Hamilton system and symplectic algorithms for the analysis of piezoelectric materials. Chinese Journal of Computation Physics 14, 735–739 (1997)

    Google Scholar 

  30. Zhu, W.Q.: Stationary solutions of stochastically excited dissipative Hamiltonian systems. Acta. Mech. Sin. 25, 666–684 (1993)

    MathSciNet  Google Scholar 

  31. Zhu, W.Q., Huang, Z.L.: Stochastic Stability of Quasi-Hamiltonian Systems. Journal of Nonlinear Dynamics in Science and Technology 5, 148–153 (1998)

    Google Scholar 

  32. Wang, Y., Mei, F.X., Xiao, J., et al.: A kind of non-conservative Hamilton system solved by the Hamilton-Jacobi method. Acta Physica Sinica 66, 0545011–0545016 (2017)

    Google Scholar 

  33. Zhang, S.Y., Deng, Z.C.: Lie Group Integration Method for Dissipative Generalized Hamiltonian System with Constraints. International Journal of Nonlinear ences & Numerical Simulation 4, 373–378 (2003)

    MATH  Google Scholar 

  34. Gao, D.Y.: Complementarity, polarity and triality in non-smooth, non-convex and non-conservative Hamilton systems. Philosophical Transactions Mathematical Physical & Engineering ences 359, 2347–2367 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Qiu, Z.P., Elishakoff, I.: Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Comput. Methods Appl. Mech. Eng. 152, 361–372 (1998)

    Article  MATH  Google Scholar 

  36. Choi, Y.J., Lee, U.: An accelerated inverse perturbation method for structural damage identification. Ksme International Journal 17, 637–646 (2003)

    Article  Google Scholar 

  37. Khodaparast, H.H., Mottershead, J.E., Friswell, M.I.: Perturbation methods for the estimation of parameter variability in stochastic model updating. Mech. Syst. Signal Process. 22, 1751–1773 (2008)

    Article  Google Scholar 

  38. Sliva, G., Brezillon, A., Cadou, J.M., et al.: A study of the eigenvalue sensitivity by homotopy and perturbation methods. J. Comput. Appl. Math. 234, 2297–2302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Qiu, Z.P., Qiu, H.C.: A direct-variance-analysis method for generalized stochastic eigenvalue problem based on matrix perturbation theory. SCIENCE CHINA Technol. Sci. 57, 1238–1248 (2014)

    Article  Google Scholar 

  40. Qiu, Z.P., Zheng, Y.N.: Predicting fatigue crack growth evolution via perturbation series expansion method based on the generalized multinomial theorem. Theoret. Appl. Fract. Mech. 86, 361–369 (2016)

    Article  Google Scholar 

  41. Wang, L., Liang, J.X., Yang, Y.W., et al.: Time-dependent Reliability Assessment of Fatigue Crack Growth Modeling Based on Perturbation Series Expansions and Interval Mathematics. Theoret. Appl. Fract. Mech. 95, 104–118 (2018)

    Article  Google Scholar 

  42. Qian, Y.J., Yang, X.D., Wu, H., et al.: Gyroscopic modes decoupling method in parametric instability analysis of gyroscopic systems. Acta. Mech. Sin. 34, 963–969 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant 11772026), Defense Industrial Technology Development Program (Grants JCKY2017208B001 and JCKY2018601B001), Beijing Municipal Science and Technology Commission via project (Grant Z191100004619006), and Beijing Advanced Discipline Center for Unmanned Aircraft System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Qiu.

Additional information

Executive Editor: Jian Xu

Appendices

Appendix A: Conservation law of linear Hamiltonian System

The symplectic structure of the Hamiltonian system can be written as

$$ \omega = \sum\limits_{i = 1}^{n} {\text{d}z_{i} \wedge \text{d}z_{n + i} } , $$
(A.1)

where the notation “\(\wedge\)” denotes the exterior product. The matrix form of Eq. (A.1) is expressed as follows:

$$ \omega = \left( {\begin{array}{*{20}c} {\text{d}z_{1} } \\ \vdots \\ {\text{d}z_{n} } \\ \end{array} } \right)^{\text{T}} \wedge \left( {\begin{array}{*{20}c} {\text{d}z_{n + 1} } \\ \vdots \\ {\text{d}z_{2n} } \\ \end{array} } \right). $$
(A.2)

Considering \(\text{d}z_{j} \wedge \text{d}z_{k} = - \text{d}z_{k} \wedge \text{d}z_{j} ,(1 \le j \le n,n + 1 \le k \le 2n)\), Eq. (A.2) is equivalent to

$$ \omega = \frac{1}{2}\left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\text{d}z_{1} } \\ \vdots \\ {\text{d}z_{n} } \\ \end{array} } \\ {\text{d}z_{n + 1} } \\ \vdots \\ {\text{d}z_{2n} } \\ \end{array} } \right)^{\text{T}} \wedge \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\text{d}z_{n + 1} } \\ \vdots \\ {\text{d}z_{2n} } \\ \end{array} } \\ { - \text{d}z_{1} } \\ \vdots \\ { - \text{d}z_{n} } \\ \end{array} } \right).$$
(A.3)

Equation (A.3) can be rewritten as

$$ \omega = \frac{1}{2}\left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\text{d}z_{1} } \\ \vdots \\ {\text{d}z_{n} } \\ \end{array} } \\ {\text{d}z_{n + 1} } \\ \vdots \\ {\text{d}z_{2n} } \\ \end{array} } \right)^{\text{T}} \wedge \left( {\begin{array}{*{20}c} {\mathbf{0}} & {{\varvec{I}}_{n} } \\ { - {\varvec{I}}_{n} } & {\mathbf{0}} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\text{d}z_{1} } \\ \vdots \\ {\text{d}z_{n} } \\ \end{array} } \\ {\text{d}z_{n + 1} } \\ \vdots \\ {\text{d}z_{2n} } \\ \end{array} } \right) = \frac{1}{2}\left( {\text{d}{\varvec{z}}} \right)^{\text{T}} \wedge {\varvec{J}}\text{d}{\varvec{z}}\user2{.} $$
(A.4)

Let

$$ {\varvec{z}}_{t} = \frac{{\text{d}{\varvec{z}}}}{{\text{d}t}}, $$
(A.5)

then the differentiation of \(\omega\) to \(t\) is

$$ \frac{{\text{d}\omega }}{{\text{d}t}} = \frac{{\text{d}\left[ {\frac{1}{2}\left( {\text{d}{\varvec{z}}} \right)^{\text{T}} \wedge {\varvec{J}}\text{d}{\varvec{z}}} \right]}}{{\text{d}t}}. $$
(A.6)

Based on the property of the differential form, Eq. (A.6) can be rewritten as

$$ \frac{{\text{d}\omega }}{{\text{d}t}} = \frac{1}{2}\left( {\text{d}{\varvec{z}}_{t} } \right)^{\text{T}} \wedge {\varvec{J}}\text{d}{\varvec{z}} + \frac{1}{2}\left( {\text{d}{\varvec{z}}} \right)^{\text{T}} \wedge {\varvec{J}}\text{d}{\varvec{z}}_{t} . $$
(A.7)

Considering the right multiplication of matrix \({\varvec{J}}\) only turns the position as well as the symbols of vector elements and the product of two negative unities make one positive unity, we can have

$$ \left( {\text{d}{\varvec{z}}_{t} } \right)^{\text{T}} \wedge {\varvec{J}}\text{d}{\varvec{z}} = \left( {{\varvec{J}}\text{d}{\varvec{z}}_{t} } \right)^{\text{T}} \wedge {\varvec{J}} \cdot {\varvec{J}}\text{d}{\varvec{z}}{.} $$
(A.8)

Substituting Eq. (A.8) into Eq. (A.7) yields

$$ \frac{{\text{d}\omega }}{{\text{d}t}} = \frac{1}{2}\left( {{\varvec{J}}\text{d}{\varvec{z}}_{t} } \right)^{\text{T}} \wedge {\varvec{J}} \cdot {\varvec{J}}\text{d}{\varvec{z}} + \frac{1}{2}\left( {\text{d}{\varvec{z}}} \right)^{\text{T}} \wedge {\varvec{J}}\text{d}{\varvec{z}}_{t} . $$
(A.9)

Considering \({\varvec{J}} \cdot {\varvec{J}} = - {\varvec{J}}^{ - 1} \cdot \user2{J = } - {\varvec{I}}\), we have

$$ \frac{{\text{d}\omega }}{{\text{d}t}} = \frac{1}{2}\left( {{\varvec{J}}\text{d}{\varvec{z}}_{t} } \right)^{\text{T}} \wedge \left( { - \text{d}{\varvec{z}}} \right) + \frac{1}{2}\left( {\text{d}{\varvec{z}}} \right)^{\text{T}} \wedge {\varvec{J}}\text{d}{\varvec{z}}_{t} . $$
(A.10)

As \(\left( {{\varvec{J}}\text{d}{\varvec{z}}_{t} } \right)^{\text{T}} \wedge \left( { - \text{d}{\varvec{z}}} \right) = \left( {\text{d}{\varvec{z}}} \right)^{\text{T}} \wedge \left( {{\varvec{J}}\text{d}{\varvec{z}}_{t} } \right)\), Eq. (A.10) can be transformed as

$$ \frac{{\text{d}\omega }}{{\text{d}t}} = \frac{1}{2}\left( {\text{d}{\varvec{z}}} \right)^{\text{T}} \wedge \left( {{\varvec{J}}\text{d}{\varvec{z}}_{t} } \right) + \frac{1}{2}\left( {\text{d}{\varvec{z}}} \right)^{\text{T}} \wedge {\varvec{J}}\text{d}{\varvec{z}}_{t} = \left( {\text{d}{\varvec{z}}} \right)^{\text{T}} \wedge \left( {{\varvec{J}}\text{d}{\varvec{z}}_{t} } \right). $$
(A.11)

For a linear Hamiltonian system, we can obtain

$$ \frac{{\text{d}\omega }}{{\text{d}t}} = \left( {\text{d}{\varvec{z}}} \right)^{\text{T}} \wedge \left[ {{\varvec{J}}\text{d}\left( {{\varvec{Bz}}} \right)} \right] = \left( {\text{d}{\varvec{z}}} \right)^{{\text{T}}} \wedge {\varvec{JB}}\text{d}{\varvec{z}} = \left( {\text{d}{\varvec{z}}} \right)^{{\text{T}}} \wedge {\varvec{C}}\text{d}{\varvec{z}}{.} $$
(A.12)

Let \(C = \left( {C_{jk} } \right)_{2n \times 2n}\), then Eq. (A.12) can be determined by

$$ \frac{{\text{d}\omega }}{{\text{d}t}} = \sum\limits_{1 \le j,k \le 2n} {C_{jk} {\text{d}}z^{j} \wedge {\text{d}}z^{k} } . $$
(A.13)

Considering \({\text{d}}z^{j} \wedge {\text{d}}z^{k} = 0 \,(j = k)\), Eq. (A.13) can be rewritten as

$$ \frac{{\text{d}\omega }}{{\text{d}t}} = \sum\limits_{1 \le j,k \le 2n,j \ne k} {C_{jk} \text{d}z^{j} \wedge \text{d}z^{k} } . $$
(A.14)

As \(C_{jk} = C_{kj} \,(k \ne j)\), we have

$$ C_{jk} \text{d}z^{j} \wedge \text{d}z^{k} + C_{kj} \text{d}z^{k} \wedge \text{d}z^{j} = C_{jk} \text{d}z^{j} \wedge \text{d}z^{k} - C_{kj} \text{d}z^{j} \wedge \text{d}z^{k} = 0 \,(k \ne j). $$
(A.15)

Substituting Eq. (A.15) into Eq. (A.14) yields

$$ \frac{{\text{d}\omega }}{{\text{d}t}} = \sum\limits_{1 \le j,k \le 2n} {C_{jk} \text{d}z^{j} \wedge \text{d}z^{k} } = 0. $$
(A.16)

Consequently, the conservation law of the linear Hamiltonian system is proved.

Appendix B: Detailed proof about that a non-infinitesimal symplectic matrix can be approximately denoted by a linear combination of an infinite series of infinitesimal symplectic matrices

Firstly, we introduce a linear function, namely

$$ f(x) = \left( {{\text{e}}^{{\alpha_{1} - \varepsilon x}} - \beta_{1} } \right){\varvec{B}}^{*} + \left( {{\text{e}}^{{\varepsilon x/n - \alpha_{2} }} - \beta_{2} } \right)\Delta \user2{B,} $$
(B.1)

where \({\varvec{B}}^{*}\) is an infinitesimal symplectic matrix while \(\Delta {\varvec{B}}\) is a non infinitesimal symplectic matrix. The parameters \(\alpha_{1} ,\beta_{1} ,\alpha_{2} ,\beta_{2}\) satisfy the following condition:

$$ \begin{gathered} {\text{e}}^{{\alpha_{1} }} - \beta_{1} = 1,{\text{e}}^{{\alpha_{1} - \varepsilon }} - \beta_{1} = 0 \Rightarrow \alpha_{1} = - \ln \left( {1 - {\text{e}}^{ - \varepsilon } } \right),\beta_{1} = {{{\text{e}}^{ - \varepsilon } } \mathord{\left/ {\vphantom {{{\text{e}}^{ - \varepsilon } } {(1 - {\text{e}}^{ - \varepsilon } )}}} \right. \kern-\nulldelimiterspace} {(1 - {\text{e}}^{ - \varepsilon } )}}, \hfill \\ {\text{e}}^{{ - \alpha_{2} }} - \beta_{2} = 0,{\text{e}}^{{\varepsilon /n - \alpha_{2} }} - \beta_{2} = 1 \Rightarrow \alpha_{2} = \ln \left( {{\text{e}}^{\varepsilon /n} - 1} \right),\beta_{2} = {1 \mathord{\left/ {\vphantom {1 {\left( {{\text{e}}^{\varepsilon /n} - 1} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\text{e}}^{\varepsilon /n} - 1} \right)}}. \hfill \\ \end{gathered} $$
(B.2)

Hence, we can obtain

$$ f(0) = {\varvec{B}}^{*},\;f\;(1) = \Delta {\varvec{B}}\user2{.} $$
(B.3)

Based on the Taylor series expansion theorem, we can obtain

$$ \begin{gathered} f(1) = f(0) + f^{(1)} (0)\left( {1 - 0} \right) + \frac{1}{2}f^{(2)} (0)\left( {1 - 0} \right)^{2} + \cdots + \frac{{f^{(k)} (0)}}{k!}\left( {1 - 0} \right)^{k} + \cdots \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = f(0) + f^{(1)} (0) + \frac{1}{2}f^{(2)} (0) + \cdots + \frac{{f^{(k)} (0)}}{k!} + \cdots, \hfill \\ \end{gathered} $$
(B.4)

where \(f^{(k)} (0)\) represents the k-th derivative of function \(f\). Calculating \(f^{(k)} (0)\) yields:

$$ f^{(k)} (0) = \left( { - \varepsilon } \right)^{k} {\text{e}}^{{\alpha_{1} }} {\varvec{B}}^{*} + \left( {\frac{\varepsilon }{n}} \right)^{k} {\text{e}}^{{ - \alpha_{2} }} \Delta {\varvec{B}}\text{ = }\varepsilon^{k} \left[ {\left( { - 1} \right)^{k} {\text{e}}^{{\alpha_{1} }} {\varvec{B}}^{*} + \left( \frac{1}{n} \right)^{k} {\text{e}}^{{ - \alpha_{2} }} \Delta {\varvec{B}}} \right]. $$
(B.5)

By choosing a large value of parameter \(n\) we can obtain

$$ \left( { - 1} \right)^{k} {\text{e}}^{{\alpha_{1} }} {\varvec{B}}^{*} + \left( \frac{1}{n} \right)^{k} {\text{e}}^{{ - \alpha_{2} }} \Delta {\varvec{B}} \approx \left( { - 1} \right)^{k} {\text{e}}^{{\alpha_{1} }} {\varvec{B}}^{*} . $$
(B.6)

Therefore, we can obtain

$$ f^{(k)} (0) \approx \varepsilon^{k} \left( { - 1} \right)^{k} {\text{e}}^{{\alpha_{1} }} {\varvec{B}}^{*} . $$
(B.7)

Substituting Eq. (B.7) into Eq. (B.4) yields

$$ f(1) = \Delta {\varvec{B}} \approx {\varvec{B}}^{*} + ( - \varepsilon ){\text{e}}^{{\alpha_{1} }} {\varvec{B}}^{*} + \frac{{\varepsilon^{2} }}{2!}{\text{e}}^{{\alpha_{1} }} {\varvec{B}}^{*} + \cdots + \frac{{\left( { - \varepsilon } \right)^{k} }}{k!}{\text{e}}^{{\alpha_{1} }} {\varvec{B}}^{*} + \cdots . $$
(B.8)

Consequently, a non-infinitesimal symplectic matrix is approximately denoted by a linear combination of an infinite series of infinitesimal symplectic matrices.

Appendix C: Conservation law of non-conservative linear Hamiltonian system

The symplectic structure of the non-conservative Hamiltonian system is expressed by

$$ \omega = \frac{1}{2}\text{d}\left( {{\varvec{z}}_{0} + \varepsilon {\varvec{z}}_{1} + \varepsilon^{2} {\varvec{z}}_{2} + \cdots + \varepsilon^{n} {\varvec{z}}_{n} + \cdots } \right)^{\text{T}} \wedge {\varvec{J}}\text{d}\left( {{\varvec{z}}_{0} + \varepsilon {\varvec{z}}_{1} + \varepsilon^{2} {\varvec{z}}_{2} + \cdots + \varepsilon^{n} {\varvec{z}}_{n} + \cdots } \right). $$
(C.1)

Expanding Eq. (C.1) yields

$$ \omega = \frac{1}{2}\sum\limits_{k,l = 0}^{\infty } {\varepsilon^{k + l} \left( {{\text{d}}{\varvec{z}}_{k} } \right)^{{\text{T}}} \wedge {\varvec{J}}\text{d}{\varvec{z}}_{l} } . $$
(C.2)

Expanding \(\omega\) as power series yields

$$ \omega = \sum\limits_{i = 0}^{\infty } {\varepsilon^{i} \omega_{i} } . $$
(C.3)

Based on Eq. (C.2) and Eq. (C.3) we can have

$$ \begin{gathered} \varepsilon^{0} :\omega_{0} = \frac{1}{2}\left( {{\text{d}}{\varvec{z}}_{0} } \right)^{{\text{T}}} {\varvec{J}}{\text{d}}{\varvec{z}}_{0}, \hfill \\ \varepsilon^{1} :\omega_{1} = \frac{1}{2}\left( {{\text{d}}{\varvec{z}}_{0} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}{\varvec{z}}_{1} + \frac{1}{2}\left( {{\text{d}}{\varvec{z}}_{1} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}{\varvec{z}}_{0}, \hfill \\ \varepsilon^{2} :\omega_{2} = \frac{1}{2}\left( {{\text{d}}{\varvec{z}}_{0} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}{\varvec{z}}_{2} + \frac{1}{2}\left( {{\text{d}}{\varvec{z}}_{1} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}{\varvec{z}}_{1} + \frac{1}{2}\left( {{\text{d}}{\varvec{z}}_{2} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}{\varvec{z}}_{0}, \hfill \\ \ldots \hfill \\ \varepsilon^{n} :\omega_{n} = \frac{1}{2}\sum\limits_{i = 0}^{n} {\left( {{\text{d}}{\varvec{z}}_{i} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}{\varvec{z}}_{n - i} }, \hfill \\ \cdots \hfill \\ \end{gathered} $$
(C.4)

The differentiation of \(\omega\) to \(t\) is expressed by

$$ \frac{{\text{d}\omega }}{{\text{d}t}} = \frac{{\text{d}\left( {\sum\limits_{i = 0}^{\infty } {\varepsilon^{i} \omega_{i} } } \right)}}{{\text{d}t}} = \sum\limits_{i = 0}^{\infty } {\varepsilon^{i} \frac{{\text{d}\omega_{i} }}{{\text{d}t}}} , $$
(C.5)

where

$$ \frac{{\text{d}\omega_{i} }}{{\text{d}t}} = \frac{1}{2}\frac{{\text{d}\left[ {\sum\limits_{j = 0}^{i} {\left( {{\text{d}}{\varvec{z}}_{j} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}{\varvec{z}}_{i - j} } } \right]}}{{\text{d}t}}. $$
(C.6)

Let

$$ {\varvec{z}}_{t}^{i} = \frac{{\text{d}{\varvec{z}}^{i} }}{{\text{d}t}}, $$
(C.7)

then Eq. (C.6) can be transformed as follows:

$$ \frac{{\text{d}\omega_{i} }}{{\text{d}t}} = \sum\limits_{j = 0}^{i} {\left( {{\text{d}}{\varvec{z}}_{j} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}{\varvec{z}}_{t}^{{_{i - j} }} } . $$
(C.8)

For \(i = 0,\) it gives

$$ \frac{{\text{d}\omega_{0} }}{{\text{d}t}} = \left( {{\text{d}}{\varvec{z}}_{0} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}{\varvec{z}}_{t}^{{_{0} }} . $$
(C.9)

As \({\varvec{z}}_{0}\) corresponds to a linear Hamiltonian system, its conservation law is proved in Sect. 2.2, namely

$$ \frac{{\text{d}\omega_{0} }}{{\text{d}t}} = 0. $$
(C.10)

For \(i = 1,\) we can have

$$ \frac{{\text{d}\omega_{1} }}{{\text{d}t}} = \left( {{\text{d}}{\varvec{z}}_{0} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}{\varvec{z}}_{t}^{{_{1} }} + \left( {{\text{d}}{\varvec{z}}_{1} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}{\varvec{z}}_{t}^{{_{0} }} . $$
(C.11)

Substituting Eq. (18) into Eq. (C.11) yields

$$ \frac{{\text{d}\omega_{1} }}{{\text{d}t}} = \left( {{\text{d}}{\varvec{z}}_{0} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}\left( {{\varvec{B}}_{0} {\varvec{z}}_{1} + {\varvec{B}}_{1} {\varvec{z}}_{0} } \right) + \left( {{\text{d}}{\varvec{z}}_{1} } \right)^{{\text{T}}} \wedge {\varvec{J}}{\text{d}}\left( {{\varvec{B}}_{0} {\varvec{z}}_{0} } \right). $$
(C.12)

Simplifying Eq. (C.12) we can have

$$ \frac{{\text{d}\omega_{1} }}{{\text{d}t}} = \left( {{\text{d}}{\varvec{z}}_{0} } \right)^{{\text{T}}} \wedge {\varvec{JB}}_{0} {\text{d}}{\varvec{z}}_{1} { + }\left( {{\text{d}}{\varvec{z}}_{0} } \right)^{{\text{T}}} \wedge {\varvec{JB}}_{1} {\text{d}}{\varvec{z}}_{0} + \left( {{\text{d}}{\varvec{z}}_{1} } \right)^{{\text{T}}} \wedge {\varvec{JB}}_{0} {\text{d}}{\varvec{z}}_{0} . $$
(C.13)

As \({\varvec{B}}_{0}\) and \({\varvec{B}}_{1}\) are infinitesimal symplectic matrices, we can have

$$ \begin{aligned} {\varvec{JB}}_{0} = &- {\varvec{B}}_{0}^{\text{T}} {\varvec{J}} = {\varvec{B}}_{0}^{\text{T}} {\varvec{J}}^{\text{T}} = \left( {\varvec{JB}}_{0} \right)^{\text{T}}, \\ {\varvec{JB}}_{1} =& - {\varvec{B}}_{1}^{\text{T}}{\varvec{JT}} = {\varvec{B}}_{1}^{\text{T}} {\varvec{J}}^{\text{T}} = \left( {\varvec{JB}}_{1} \right)^{\text{T}}. \end{aligned} $$
(C.14)

Let \({\varvec{C}}^{0} = \left( {C_{jk}^{0} } \right)_{2n \times 2n} = {\varvec{JB}}_{0} ,{\varvec{C}}^{1} = \left( {C_{jk}^{1} } \right)_{2n \times 2n} = {\varvec{JB}}_{1}\), then \({\varvec{C}}^{0}\) and \({\varvec{C}}^{1}\) are symmetric matrices. Simplifying Eq. (C.13) yields

$$ \frac{{\text{d}\omega_{1} }}{{\text{d}t}} = \sum\limits_{1 \le j,k \le 2n} {C_{jk}^{0} {\text{d}}z_{0}^{j} \wedge {\text{d}}z_{1}^{k} } + \sum\limits_{1 \le j,k \le 2n} {C_{jk}^{1} {\text{d}}z_{0}^{j} \wedge {\text{d}}z_{0}^{k} } + \sum\limits_{1 \le j,k \le 2n} {C_{jk}^{0} {\text{d}}z_{1}^{j} \wedge {\text{d}}z_{0}^{k} } . $$
(C.15)

As \({\text{d}}z_{0}^{j} \wedge {\text{d}}z_{1}^{k} = - {\text{d}}z_{1}^{k} \wedge {\text{d}}z_{0}^{j}\) and \(C_{jk}^{0} = C_{kj}^{0}\) we can have

$$ \sum\limits_{1 \le j,k \le 2n} {C_{jk}^{0} {\text{d}}z_{0}^{j} \wedge {\text{d}}z_{1}^{k} } + \sum\limits_{1 \le j,k \le 2n} {C_{kj}^{0} {\text{d}}z_{1}^{k} \wedge {\text{d}}z_{0}^{j} } = 0. $$
(C.16)

Based on Eq. (A.16) in Appendix A, we can obtain

$$ \sum\limits_{1 \le j,k \le 2n} {C_{jk}^{1} {\text{d}}z_{0}^{j} \wedge {\text{d}}z_{0}^{k} } = 0. $$
(C.17)

Substituting Eqs. (C.16) and (C.17) into Eq. (C.15) yields

$$ \frac{{\text{d}\omega_{1} }}{{\text{d}t}} = 0. $$
(C.18)

For \(i = l\), we can have

$$ \frac{{\text{d}\omega_{l} }}{{\text{d}t}} = \sum\limits_{m = 0}^{l} {\sum\limits_{n = m}^{l} {\left( {{\text{d}}{\varvec{z}}_{m} } \right)^{{\text{T}}} } } \wedge {\varvec{JB}}_{n - m} {\text{d}}{\varvec{z}}_{l - n} = \sum\limits_{m = 0}^{l} {\sum\limits_{n = m}^{l} {\left( {{\text{d}}{\varvec{z}}_{m} } \right)^{{\text{T}}} } } \wedge C^{n - m} {\text{d}}{\varvec{z}}_{l - n} .$$
(C.19)

Simplifying Eq. (C.19) yields

$$ \frac{{\text{d}\omega_{l} }}{{\text{d}t}} = \sum\limits_{m = 0}^{l} {\sum\limits_{n = m}^{l} {\left( {{\text{d}}{\varvec{z}}_{m} } \right)^{{\text{T}}} } } \wedge C^{n - m} {\text{d}}{\varvec{z}}_{l - n} = \sum\limits_{0 \le m \le n \le l}^{{}} {\left( {{\text{d}}{\varvec{z}}_{m} } \right)^{{\text{T}}} \wedge C^{n - m} {\text{d}}{\varvec{z}}_{l - n} } . $$
(C.20)

Based on Eq. (C.16), we can similarly have

$$ \left( {{\text{d}}{\varvec{z}}_{m} } \right)^{\text{T}} \wedge C^{n - m} {\text{d}}{\varvec{z}}_{l - n} + \left( {{\text{d}}{\varvec{z}}_{l - n} } \right)^{{\text{T}}} \wedge C^{n - m} {\text{d}}{\varvec{z}}_{m} = 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (m \ne l - n). $$
(C.21)

Substituting Eq. (C.21) into Eq. (C.20) yields

$$ \frac{{\text{d}\omega_{l} }}{{\text{d}t}} = \sum\limits_{m \le l/2}^{{}} {\left( {{\text{d}}{\varvec{z}}_{m} } \right)^{{\text{T}}} \wedge C^{l - 2m} {\text{d}}{\varvec{z}}_{m} } . $$
(C.22)

Based on Eq. (A.16) in Appendix A, we can similarly have

$$ \sum\limits_{m \le l/2}^{{}} {\left( {{\text{d}}{\varvec{z}}_{m} } \right)^{{\text{T}}} \wedge C^{l - 2m} {\text{d}}{\varvec{z}}_{m} } = 0. $$
(C.23)

Therefore, we can have

$$ \frac{{{\text{d}}\omega_{2} }}{{{\text{d}}t}} = 0, \cdots ,\frac{{{\text{d}}\omega_{n} }}{{{\text{d}}t}} = 0, \cdots . $$
(C.24)

Consequently, the conservation law of the non-conservative linear Hamiltonian system is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Xia, H. Symplectic perturbation series methodology for non-conservative linear Hamiltonian system with damping. Acta Mech. Sin. 37, 983–996 (2021). https://doi.org/10.1007/s10409-021-01076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01076-0

Keywords

Navigation