Skip to main content
Log in

On the electrophysiology of the atrial fast conduction system: an uncertain quantification study

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Cardiac modeling entails the epistemic uncertainty of the input parameters, such as bundles and chambers geometry, electrical conductivities and cell parameters, thus calling for an uncertainty quantification (UQ) analysis. Since the cardiac activation and the subsequent muscular contraction is provided by a complex electrophysiology system made of interconnected conductive media, we focus here on the fast conductivity structures of the atria (internodal pathways) with the aim of identifying which of the uncertain inputs mostly influence the propagation of the depolarization front. Firstly, the distributions of the input parameters are calibrated using data available from the literature taking into account gender differences. The output quantities of interest (QoIs) of medical relevance are defined and a set of metamodels (one for each QoI) is then trained according to a polynomial chaos expansion (PCE) in order to run a global sensitivity analysis with non-linear variance-based Sobol’ indices with confidence intervals evaluated through the bootstrap method. The most sensitive parameters on each QoI are then identified for both genders showing the same order of importance of the model inputs on the electrical activation. Lastly, the probability distributions of the QoIs are obtained through a forward sensitivity analysis using the same trained metamodels. It results that several input parameters—including the position of the internodal pathways and the electrical impulse applied at the sinoatrial node—have a little influence on the QoIs studied. Vice-versa the electrical activation of the atrial fast conduction system is sensitive on the bundles geometry and electrical conductivities that need to be carefully measured or calibrated in order for the electrophysiology model to be accurate and predictive.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hall, J.E.: Guyton and Hall Textbook of Medical Physiology e-Book. Elsevier Health Sciences (2015)

  2. Harrild, D.M., Henriquez, C.S.: A computer model of normal conduction in the human atria. Circ. Res. 87, e25–e36 (2000)

    Google Scholar 

  3. Sundnes, J., Lines, G.T., Cai, X., et al.: Computing the Electrical Activity in the Heart, vol. 1. Springer, New York (2007)

    MATH  Google Scholar 

  4. Vigmond, E., Dos Santos, R.W., Prassl, A., et al.: Solvers for the cardiac bidomain equations. Progr. Biophys. Mol. Biol 96, 3–18 (2008)

    Article  Google Scholar 

  5. Sepulveda, N.G., Roth, B.J., Wikswo Jr., J.P.: Current injection into a two-dimensional anisotropic bidomain. Biophys. J. 55, 987 (1989)

    Article  Google Scholar 

  6. Pullan, A.J., Tomlinson, K.A., Hunter, P.J.: A finite element method for an eikonal equation model of myocardial excitation wavefront propagation. SIAM J. Appl. Math. 63(1), 324–350 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barone, A., Gizzi, A., Fenton, F., et al.: Experimental validation of a variational data assimilation procedure for estimating space-dependent cardiac conductivities. Comput. Methods Appl. Mech. Eng. 358, 112615 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barone, A., Carlino, M.G., Gizzi, A., et al.: Efficient estimation of cardiac conductivities: a proper generalized decomposition approach. J. Comput. Phys. 423, 109810 (2020)

    Article  MathSciNet  Google Scholar 

  9. Del Corso, G., Verzicco, R., Viola, F.: Sensitivity analysis of an electrophysiology model for the left ventricle. J. R. Soc. Interface 17(171), 20200532 (2020)

    Article  Google Scholar 

  10. Eldred, M., Burkardt, J.: Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. In: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 976 (2009)

  11. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008)

    Article  Google Scholar 

  12. Niederer, S.A., Kerfoot, E., Benson, A.P., et al.: Verification of cardiac tissue electrophysiology simulators using an n-version benchmark. Philos. Trans. R. Soc. A 369, 4331–4351 (2011)

    Article  MathSciNet  Google Scholar 

  13. Ten Tusscher, K., Panfilov, A.: Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. Phys. Med. Biol. 51, 6141 (2006)

    Article  Google Scholar 

  14. Rognes, M.E., Farrell, P.E., Funke, S.W., Hake, J.E., Maleckar, M.C.M.: cbcbeat: an adjoint-enabled framework for computational cardiac electrophysiology. J. Open Source Softw. 2, 224 (2017)

    Article  Google Scholar 

  15. Alnæs, M.S., Blechta, J., Hake, J., et al.: The fenics project version 1.5. Arch. Numer. Softw. 3, 9 (2015)

    Google Scholar 

  16. Viola, F., Meschini, V., Verzicco, R.: Fluid-structure-electrophysiology interaction (fsei) in the left-heart: a multi-way coupled computational model. Eur. J. Mech. B 79, 212–232 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Muñoz-Cobo, J.L., Mendizábal, R., Miquel, A., et al.: Use of the principles of maximum entropy and maximum relative entropy for the determination of uncertain parameter distributions in engineering applications. Entropy 19, 486 (2017)

    Article  Google Scholar 

  18. Maceira, A.M., Cosín-Sales, J., Roughton, M., et al.: Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 12, 65 (2010)

    Article  Google Scholar 

  19. Hudsmith, L.E., Petersen, S.E., Francis, J.M., et al.: Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 7, 775–782 (2005)

    Article  Google Scholar 

  20. Keller, A., Gopal, A., King, D.: Left and right atrial volume by freehand three-dimensional echocardiography: in vivo validation using magnetic resonance imaging. Eur. J. Echocardiogr. 1, 55–65 (2000)

    Article  Google Scholar 

  21. Dössel, O., Krueger, M.W., Weber, F.M., et al.: Computational modeling of the human atrial anatomy and electrophysiology. Med. Biol. Eng. Comput. 50, 773–799 (2012)

    Article  Google Scholar 

  22. Hayashi, H., Lux, R.L., Wyatt, R.F., et al.: Relation of canine atrial activation sequence to anatomic landmarks. Am. J. Physiol.-Heart Circ. Physiol. 242, H421–H428 (1982)

    Article  Google Scholar 

  23. Pegolotti, L., Dedè, L., Quarteroni, A.: Isogeometric analysis of the electrophysiology in the human heart: numerical simulation of the bidomain equations on the atria. Comput. Methods Appl. Mech. Eng. 343, 52–73 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Truex, R.C., Smythe, M.Q., Taylor, M.J.: Reconstruction of the human sinoatrial node. Anatom. Rec. 159, 371–378 (1967)

    Article  Google Scholar 

  25. Hurtado, D.E., Castro, S., Madrid, P.: Uncertainty quantification of 2 models of cardiac electromechanics. Int. J. Numer. Methods Biomed. Eng. 33(12), e2894 (2017)

    Article  MathSciNet  Google Scholar 

  26. Sobol’Ilya, M., Shukhman, B.V.: On global sensitivity indices: Monte Carlo estimates affected by random errors. Monte Carlo Methods Appl. 13, 89–97 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Gratiet, L.L., Marelli, S., Sudret, B.: Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes. Handbook of Uncertainty Quantification, pp. 1–37 (2016)

  28. Caflisch, R.E.: Monte Carlo and quasi-monte Carlo methods. Acta Numer. 7, 1–49 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  30. Rousselet, G., Pernet, C., Wilcox, R.R.: A practical introduction to the bootstrap: a versatile method to make inferences by using data-driven simulations (2019)

  31. Dubreuil, S., Berveiller, M., Petitjean, F., et al.: Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion. Reliab. Eng. Syst. Saf. 121, 263–275 (2014)

    Article  Google Scholar 

  32. Blatman, G., Sudret, B.: Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab. Eng. Syst. Saf. 95, 1216–1229 (2010)

    Article  Google Scholar 

  33. Pathmanathan, P., Cordeiro, J.M., Gray, R.A.: Comprehensive uncertainty quantification and sensitivity analysis for cardiac action potential models. Front. Physiol. 10, 721 (2019)

    Article  Google Scholar 

  34. Wilders, R., Jongsma, H., Van Ginneken, A.: Pacemaker activity of the rabbit sinoatrial node. a comparison of mathematical models. Biophys. J. 60(5), 1202–1216 (1991)

    Article  Google Scholar 

  35. Zhang, H., Holden, A., Kodama, I., et al.: Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. Am. J. Physiol.-Heart Circul. Physiol. 279, H397–H421 (2000)

    Article  Google Scholar 

  36. Merckx, K.L., De Vos, C.B., Palmans, A., et al.: Atrial activation time determined by transthoracic doppler tissue imaging can be used as an estimate of the total duration of atrial electrical activation. J. Am. Soc. Echocardiogr. 18, 940–944 (2005)

    Article  Google Scholar 

  37. Quaglino, A., Pezzuto, S., Koutsourelakis, P.S., et al.: Fast uncertainty quantification of activation sequences in patient-specific cardiac electrophysiology meeting clinical time constraints. Int. J. Numer. Methods Biomed. Eng. 34, e2985 (2018)

    Article  MathSciNet  Google Scholar 

  38. Lucor, D., Le Maître, O.P.: Cardiovascular modeling with adapted parametric inference. ESAIM 62, 91–107 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Whittaker, D.G., Clerx, M., Lei, C.L., et al.: Calibration of ionic and cellular cardiac electrophysiology models. In: Wiley Interdisciplinary Reviews: Systems Biology and Medicine, p. e1482 (2020)

  40. Roithinger, F.X., Abou-Harb, M., Pachinger, O., et al.: The effect of the atrial pacing site on the total atrial activation time. Pacing Clin. Electrophysiol. 24, 316–322 (2001)

    Article  Google Scholar 

  41. Ramirez, R.J., Nattel, S., Courtemanche, M.: Mathematical analysis of canine atrial action potentials: rate, regional factors, and electrical remodeling. Am. J. Physiol.-Heart Circ. Physiol. 279, H1767–H1785 (2000)

    Article  Google Scholar 

  42. Bueno-Orovio, A., Kay, D., Grau, V., et al.: Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. J. R. Soc. Interface 11, 20140352 (2014)

    Article  Google Scholar 

  43. Cusimano, N., del Teso, F., Gerardo-Giorda, L., et al.: Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and robin boundary conditions. SIAM J. Numer. Anal. 56, 1243–1272 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Cusimano, N., Gizzi, A., Fenton, F., et al.: Key aspects for effective mathematical modelling of fractional-diffusion in cardiac electrophysiology: A quantitative study. Commun. Nonlinear Sci. Numer. Simul. 84, 105152 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Meschini, V., Viola, F., Verzicco, R.: Modeling mitral valve stenosis: a parametric study on the stenosis severity level. J. Biomech. 84, 218–226 (2019)

    Article  Google Scholar 

  46. Nygren, A., Fiset, C., Firek, L., et al.: Mathematical model of an adult human atrial cell: the role of k+ currents in repolarization. Circ. Res. 82, 63–81 (1998)

    Article  Google Scholar 

  47. Seemann, G., Höper, C., Sachse, F.B., et al.: Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos. Trans. R. Soc. A 364, 1465–1481 (2006)

    Article  Google Scholar 

  48. Trayanova, N.A.: Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. Circ. Res. 108, 113–128 (2011)

    Article  Google Scholar 

  49. Rodriguez, B., Trayanova, N., Noble, D.: Modeling cardiac ischemia. Ann. N.Y. Acad. Sci. 1080, 395 (2006)

    Article  Google Scholar 

  50. Seemann, G., Bustamante, P.C., Ponto, S., et al.: Atrial fibrillation-based electrical remodeling in a computer model of the human atrium. In: 2010 Computing in Cardiology, pp. 417–420. IEEE (2010)

  51. Viola, F., Jermyn, E., Warnock, J., et al.: Left ventricular hemodynamics with an implanted assist device: an in vitro fluid dynamics study. Ann. Biomed. Eng. 47(8), 1799–1814 (2019)

    Article  Google Scholar 

  52. Rawles, J.M.: A mathematical model of left ventricular function in atrial fibrillation. Int J. Bio-medical Comput. 23, 57–68 (1988)

    Article  Google Scholar 

  53. Cherry, E.M., Fenton, F.H.: Suppression of alternans and conduction blocks despite steep apd restitution: electrotonic, memory, and conduction velocity restitution effects. Am. J. Physiol.-Heart Circul. Physiol. 286, H2332–H2341 (2004)

    Article  Google Scholar 

  54. Gizzi, A., Cherry, E., Gilmour Jr., R.F., et al.: Effects of pacing site and stimulation history on alternans dynamics and the development of complex spatiotemporal patterns in cardiac tissue. Front. Physiol. 4, 71 (2013)

    Article  Google Scholar 

  55. Meschini, V., Viola, F., Verzicco, R.: Heart rate effects on the ventricular hemodynamics and mitral valve kinematics. Comput. Fluids 197, 104359 (2020)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This study has been performed with support of the ’Fluid dynamics of hearts at risk of failure: towards methods for the prediction of disease progressions’ funded by the Italian Ministry of Education and University (Grant 2017A889FP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Viola.

Additional information

Communicated by Executive Editor: Ji-Zeng Wang

Appendix A: Convergence of the electrophysiology model

Appendix A: Convergence of the electrophysiology model

Fig. 7
figure 7

Time behaviour of the average transmembrane potential in the atrial fast conduction network by refining a the spatial and b the temporal resolution. The insets show the same quantity within the initial fast depolarization phase

The transmembrane potential averaged over the ventricular domain as a function of time is shown in Fig. 7. Each solid curve corresponds to a different simulation of the monodomain equations with the ten Tusscher–Panfilov model on a different grid with elements number varying from 600 to 4000 and different time step sizes [12]. The averaged transmembrane potential becomes basically grid independent for mesh resolution exceeding 2000 elements and, based on this result, a mesh with 2397 elements (corresponding to a \(\Delta _{X} = 0.25\) mm) and \(\Delta t = 0.005\) ms is used for the UQ analysis. The corresponding computational cost to run a single simulation is of about 30 CPU-minutes and, consequently, the cost to build the UQ datasets is of about 42 CPU-days. The numerical simulation have been run on an Intel Xeon Processors (E5-2620 v3 - 15M Cache, 2.40 GHz), with 16 CPUs.

1.1 B: Convergence of the PCE analysis

Figure 8a shows the coefficient \(R^{2}\) and \(Q^{2}\) introduced in Sect. 2 for the case of \(t_{AV}\) in the female population as a function of the training dataset size. The optimal metamodel (see Table 2) is trained each time using a different training dataset with size ranging from 500 to 2000 and tested against the same testing dataset made of 200 samples. The \(R^{2}\) index is stable with respect to the training data set size as the number of samples is larger than 500, which means that the variety of the metamodel is sufficient to describe the physical phenomenon at study. Conversely, lower size of the training dataset lead to a suboptimal value of the index \(Q^{2}\), which corresponds to a reduced ability of the metamodel to predict values outside the training sample. Hence, the convergence of the difference \(R^{2}\)\(Q^{2}\) indicates that the metamodel can be considered stable when the size of the training metamodel exceeds 1000 cases. Similar results are obtained for the other QoIs and the males population (not reported here for the sake of brevity).

Fig. 8
figure 8

a \(R^{2}\) and \(Q^{2}\) indices for \(t_{AV}\) of the female dataset. Indices are reported for an increasing size of the training dataset and a fixed testing dataset of size 200 is used to compute the corresponding \(Q^{2}\) index. b Stability analysis of Sobol’ indices for \(t_{AV}\) on the female dataset with 5-percentile confidence intervals calculated using a bootstrap methodology

Another approach for testing the metamodel performance consists of evaluating its stability to a perturbation of the training dataset. Specifically, the results of the UQ analysis are shown as a function of the dataset size thus determining for what size they become stable, as shown in Fig. 8b where the Sobol’ indices are seen to be stable for dataset size larger than 1000. The figure also reports the 5-percentile confidence intervals calculated using a bootstrap method on the training dataset.

1.2 C: Electrical conductivity vs conduction velocity

Fig. 9
figure 9

Conduction velocity as a function of the electrical conductivity (black dots) with superimposed a square root interpolation function (blue line). The straight red lines indicate the ranges of the electrical conductivity and of the conduction velocity studied in the UQ analysis

The electrical conductivity M is an important input parameter of the electrophysiology model. However, most of the available measurements in the literature refer to the conduction velocity rather than to the electrical conductivity [1, 2, 21, 22]. For this reason, an inverse calibration has to be preformed to determine the electrical conductivities corresponding to the conduction velocities measured experimentally. In order to determine such relation between the electrical conductivity and the conduction velocity, the monodomain equations have been solved over a one-dimensional straight domain of length 100 mm for several electrical conductivity values. The corresponding conduction velocity is measured by selecting two points 50 mm apart each other inside the domain and monitoring their activation time (defined as the instant when the transmembrane potential exceeds \(-70\) mV). The conduction velocity is thus measured as the ratio between the distance between the monitoring points and the time interval among their activation and is reported in Fig. 9 for spatial and temporal discretization of \(\Delta x = 0.25\) mm and \(\Delta t = 1\cdot 10^{-3}\) ms and current stimulus applied at one tip of the domain as defined in equation (2) with \(S_{d} = \)2.5 ms, \(S_{a} =\)1 mA/\(\text {mm}^{2}\) and \(SA_l = 6.85\) mm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Corso, G., Verzicco, R. & Viola, F. On the electrophysiology of the atrial fast conduction system: an uncertain quantification study. Acta Mech. Sin. 37, 264–278 (2021). https://doi.org/10.1007/s10409-021-01067-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01067-1

Keywords

Navigation