Skip to main content
Log in

Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Nonlinear vibration absorbers have been widely used for vibration suppression of elastic structures, but they were usually placed within the structures. However, designing such a vibration damping device within an engineering structure is possibly difficult. In this paper, an inertial nonlinear energy sinks (NES) is mounted on the boundaries of the elastic beam to suppress its vibration. Although this vibration suppression approach is more in line with engineering requirements, it introduces nonlinear oscillators at boundaries. This brings certain difficulties to the structural vibration analysis and the optimal absorber design. An approximate analytical approach for the steady-state response is developed in this work and verified by numerical solutions. The comparison with the uncontrolled system demonstrates the high-efficiency vibration suppression of the inertial NES installed on the boundary. Besides, the optimization of the NES parameters is performed. Resonance amplitude of the elastic structure can be reduced by 98% with the optimized NES. In summary, this paper proposes a novel approach to suppress the bending vibration of elastic structures through boundary NESs. The vibration reduction effect is very significant, and it is more feasible to implement. Therefore, this work is helpful to study the vibration of elastic structures with nonlinear boundaries and to promote the application of nonlinear vibration absorbers.

Graphic abstract

A boundary damping strategy is proposed to solve the problem of the difficulty of installing the vibration absorber in engineering. Introduce an inertial nonlinear energy sinks (NES) to reduce the weight of the shock absorber. The nonlinear boundary is separated and merged into the elastic beam vibration control equation to realize the decoupling of the continuum model. Resonance peak of the elastic structure can be reduced by 98% with the optimized NES. This work is helpful to study the vibration of elastic structures with nonlinear boundaries and to promote the application of nonlinear vibration absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang, J.T.S., Lin, C.C.: Dynamic analysis of generally supported beams using Fourier series. J. Sound Vib. 196, 285–293 (1996). https://doi.org/10.1006/jsvi.1996.0484

    Article  Google Scholar 

  2. Nayek, R., Mukhopadhyay, S., Narasimhan, S.: Mass normalized mode shape identification of bridge structures using a single actuator–sensor pair. Struct. Control Health Monit. 25, 1–22 (2018). https://doi.org/10.1002/stc.2244

    Article  Google Scholar 

  3. Ye, S.Q., Mao, X.Y., Ding, H., et al.: Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions. Int. J. Mech. Sci. 168, 105294 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105294

    Article  Google Scholar 

  4. Canbolat, H., Dawson, D., Rahn, C., et al.: Boundary control of a cantilevered flexible beam with point-mass dynamics at the free end. Mechatronics 8, 163–186 (1998). https://doi.org/10.1016/S0957-4158(97)00022-6

    Article  Google Scholar 

  5. Brito, W.K.F., Maia, C.D.C.D., Mendonca, A.V.: Bending analysis of elastically connected Euler–Bernoulli double-beam system using the direct boundary element method. Appl. Math. Model. 74, 387–408 (2019). https://doi.org/10.1016/j.apm.2019.04.049

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, W., Yang, X.D., Zhang, W., et al.: Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities. Acta Mech. Sin. 35, 879–893 (2019). https://doi.org/10.1007/s10409-019-00851-4

    Article  MathSciNet  Google Scholar 

  7. Afshin, S., Yas, M.H.: Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness. Appl. Math. Mech. 41, 785–804 (2020). https://doi.org/10.1007/s10483-020-2610-7

    Article  MATH  Google Scholar 

  8. Feng, Z.H., Hu, H.Y.: Principal parametric and three-to-one internal resonances of flexible beams undergoing a large linear motion. Acta Mech. Sin. 19, 355–364 (2003). https://doi.org/10.1007/BF02487813

    Article  Google Scholar 

  9. Museros, P., Moliner, E., Martínez-Rodrigo, M.D.: Free vibrations of simply-supported beam bridges under moving loads: maximum resonance, cancellation and resonant vertical acceleration. J. Sound Vib. 332, 326–345 (2013). https://doi.org/10.1016/j.jsv.2012.08.008

    Article  Google Scholar 

  10. Zhou, B., Zheng, X., Kang, Z., et al.: Modeling size-dependent thermo-mechanical behaviors of shape memory polymer Bernoulli–Euler microbeam. Appl. Math. Mech. 40, 1531–1546 (2019). https://doi.org/10.1007/s10483-019-2540-5

    Article  MathSciNet  Google Scholar 

  11. Huang, J.L., Xiao, L.J., Zhu, W.D.: Investigation of quasi-periodic response of a buckled beam under harmonic base excitation with an “unexplained” sideband structure. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05641-3

    Article  Google Scholar 

  12. Xiao, S., Chen, B., Yang, M.: Bifurcation and buckling analysis of a unilaterally confined self-rotating cantilever beam. Acta Mech. Sin. 22, 177–184 (2006). https://doi.org/10.1007/s10409-006-0096-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, X., Huang, Y., Zhao, Y., et al.: Large deformation analysis of a cantilever beam made of axially functionally graded material by homotopy analysis method. Appl. Math. Mech. 40, 1375–1386 (2019). https://doi.org/10.1007/s10483-019-2515-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Geng, X.F., Ding, H., Wei, K.X., et al.: Suppression of multiple modal resonances of a cantilever beam by an impact damper. Appl. Math. Mech. 41, 383–400 (2020). https://doi.org/10.1007/s10483-020-2588-9

    Article  Google Scholar 

  15. Kang, K.H., Kim, K.J.: Modal properties of beams and plates on resilient supports with rotational and translational complex stiffness. J. Sound Vib. 190, 207–220 (1996). https://doi.org/10.1006/jsvi.1996.0057

    Article  Google Scholar 

  16. Jin, J.D., Yang, X.D., Zhang, Y.F.: Stability and natural characteristics of a supported beam. Adv. Mater. Res. 338, 467–472 (2011). https://doi.org/10.4028/www.scientific.net/AMR.338.467

    Article  Google Scholar 

  17. Kim, H.K., Kim, M.S.: Vibration of beams with generally restrained boundary conditions using Fourier series. J. Sound Vib. 245, 771–784 (2001). https://doi.org/10.1006/jsvi.2001.3615

    Article  Google Scholar 

  18. Dong, X., Huang, X., Liu, J.: Modeling and simulation of droplet impact on elastic beams based on SPH. Eur. J. Mech. A 75, 237–257 (2019). https://doi.org/10.1016/j.euromechsol.2019.01.026

    Article  MathSciNet  MATH  Google Scholar 

  19. Wattanasakulpong, N., Chaikittiratana, A.: Adomian-modified decomposition method for large-amplitude vibration analysis of stepped beams with elastic boundary conditions. Mech. Based Des. Struct. Mach. 44, 270–282 (2016). https://doi.org/10.1080/15397734.2015.1055762

    Article  Google Scholar 

  20. Morgul, O.: Dynamic boundary control of a Euler–Bernoulli beam. IEEE Trans. Autom. Control 37, 639–642 (1992). https://doi.org/10.1109/9.135504

    Article  MathSciNet  Google Scholar 

  21. Cai, G., Teng, Y., Lim, C.W.: Active control and experiment study of a flexible hub-beam system. Acta Mech. Sin. 26, 289–298 (2010). https://doi.org/10.1007/s10409-009-0312-0

    Article  MathSciNet  Google Scholar 

  22. Jin, X., Chen, M.Z.Q., Huang, Z.: Minimization of the beam response using inerter-based passive vibration control configurations. Int. J. Mech. Sci. 119, 80–87 (2016). https://doi.org/10.1016/j.ijmecsci.2016.10.007

    Article  Google Scholar 

  23. Zhang, F., Dawson, D.: Boundary control of the Timoshenko beam with free-end mass/inertial dynamics. Decis. Control 1, 245–250 (1997)

    Google Scholar 

  24. Samani, F.S., Pellicano, F.: Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers. J. Sound Vib. 325, 742–754 (2009). https://doi.org/10.1016/j.jsv.2009.04.011

    Article  Google Scholar 

  25. Venuti, F., Reggio, A.: Mitigation of human-induced vertical vibrations of footbridges through crowd flow control. Struct. Control Health Monit. 25, 1–16 (2018). https://doi.org/10.1002/stc.2266

    Article  Google Scholar 

  26. Tso, M.H., Yuan, J., Wong, W.O.: Suppression of random vibration in flexible structures using a hybrid vibration absorber. J. Sound Vib. 331, 974–986 (2012). https://doi.org/10.1016/j.jsv.2011.10.017

    Article  Google Scholar 

  27. Li, Y., Rahn, C.: Adaptive vibration isolation for axially moving beams. IEEE/ASME Trans. Mechatronics 5, 419–428 (2000). https://doi.org/10.1109/3516.891053

    Article  Google Scholar 

  28. Amjadian, M., Agrawal, A.K.: Feasibility study of using a semiactive electromagnetic friction damper for seismic response control of horizontally curved bridges. Struct. Control Health Monit. 26, e2333 (2019). https://doi.org/10.1002/stc.2333

    Article  Google Scholar 

  29. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123, 324 (2001). https://doi.org/10.1115/1.1368883

    Article  Google Scholar 

  30. Quinn, D.D., Gendelman, O.V., Kerschen, G., et al.: Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: Part I. J. Sound Vib. 311, 1228–1248 (2008). https://doi.org/10.1016/j.jsv.2009.03.004

    Article  Google Scholar 

  31. Wei, Y., Wei, S., Zhang, Q., et al.: Targeted energy transfer of a parallel nonlinear energy sink. Appl. Math. Mech. (Engl. Ed.) 40, 621–630 (2019). https://doi.org/10.1007/s10483-019-2477-6

    Article  MathSciNet  Google Scholar 

  32. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. 99, 593–609 (2020). https://doi.org/10.1007/s11071-019-04775-3

    Article  MATH  Google Scholar 

  33. Vakakis, A.F., Manevitch, L.I., Gendelman, O., et al.: Dynamics of linear discrete systems connected to local, essentially non-linear attachments. J. Sound Vib. 264, 559–577 (2003). https://doi.org/10.1016/S0022-460X(02)01207-5

    Article  Google Scholar 

  34. Zang, J., Chen, L.Q.: Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink. Acta Mech. Sin. 33, 801–822 (2017). https://doi.org/10.1007/s10409-017-0671-x

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Z., Zhang, Y.W., Ding, H.: Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. 100, 2121–2139 (2020). https://doi.org/10.1007/s11071-020-05606-6

    Article  Google Scholar 

  36. Xue, J.R., Zhang, Y.W., Ding, H., et al.: Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation. Appl. Math. Mech. 41, 1–14 (2020). https://doi.org/10.1007/s10483-020-2560-6

    Article  Google Scholar 

  37. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100, 3061–3107 (2020). https://doi.org/10.1007/s11071-020-05724-1

    Article  Google Scholar 

  38. Kani, M., Khadem, S.E., Pashaei, M.H., et al.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83, 1–22 (2016). https://doi.org/10.1007/s11071-015-2304-x

    Article  MathSciNet  Google Scholar 

  39. Parseh, M., Dardel, M., Ghasemi, M.H., et al.: Steady state dynamics of a non-linear beam coupled to a non-linear energy sink. Int. J. Nonlinear Mech. 79, 48–65 (2016). https://doi.org/10.1016/j.ijnonlinmec.2015.11.005

    Article  Google Scholar 

  40. Georgiades, F., Vakakis, A.F.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 12, 643–651 (2007). https://doi.org/10.1016/j.cnsns.2005.07.003

    Article  MATH  Google Scholar 

  41. Yang, T.Z., Yang, X.D., Li, Y., et al.: Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. J. Vib. Control 20, 1293–1300 (2014). https://doi.org/10.1177/1077546313480547

    Article  MathSciNet  Google Scholar 

  42. Mamaghani, A.E., Khadem, S.E., Bab, S.: Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn. 86, 1761–1795 (2016). https://doi.org/10.1007/s11071-016-2992-x

    Article  MATH  Google Scholar 

  43. Nili Ahmadabadi, Z., Khadem, S.E.: Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. J. Sound Vib. 333, 4444–4457 (2014). https://doi.org/10.1016/j.jsv.2014.04.033

    Article  Google Scholar 

  44. Chen, J.E., He, W., Zhang, W., et al.: Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dyn. 91, 885–904 (2018). https://doi.org/10.1007/s11071-017-3917-z

    Article  Google Scholar 

  45. Parseh, M., Dardel, M., Ghasemi, M.H.: Investigating the robustness of nonlinear energy sink in steady state dynamics of linear beams with different boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 29, 50–71 (2015). https://doi.org/10.1016/j.cnsns.2015.04.020

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, Z., Lu, Z.Q., Ding, H., et al.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019). https://doi.org/10.1016/j.jsv.2019.03.014

    Article  Google Scholar 

  47. Chen, H.Y., Mao, X.Y., Ding, H., et al.: Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks. Mech. Syst. Signal Process. 135, 106383 (2020). https://doi.org/10.1016/j.ymssp.2019.106383

    Article  Google Scholar 

  48. Ding, H., Lu, Z.Q., Chen, L.Q.: Nonlinear isolation of transverse vibration of pre-pressure beams. J. Sound Vib. 442, 738–751 (2019). https://doi.org/10.1016/j.jsv.2018.11.028

    Article  Google Scholar 

  49. Ding, H., Ji, J., Chen, L.Q.: Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mech. Syst. Signal Process. 121, 675–688 (2019). https://doi.org/10.1016/j.ymssp.2018.11.057

    Article  Google Scholar 

  50. Chen, M.Z.Q., Papageorgiou, C., Scheibe, F., et al.: The missing mechanical circuit element. IEEE Circuits Syst. Mag. 9, 10–26 (2009). https://doi.org/10.1109/MCAS.2008.931738

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grants 12025204 and 12002217), the Program of Shanghai Municipal Education Commission (Grant 2019-01-07-00-09-E00018), and the Key Research Projects of Shanghai Science and Technology Commission (Grant 18010500100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding.

Additional information

Executive Editor: Gui-Lin Wen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ding, H., Zhang, YW. et al. Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks. Acta Mech. Sin. 37, 387–401 (2021). https://doi.org/10.1007/s10409-021-01062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01062-6

Keywords

Navigation