Skip to main content
Log in

Optimal Parameters for Tuned Mass Dampers and Examination of Equal Modal Frequency and Damping Criteria

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

This work developed an idea and systematically explains ‘equal modal frequency and damping’ (EMFD) technique to derive the complete closed form solutions of tuned mass damper (TMD), to reduce dynamic response of structural system.

Method

The optimum parameters for the damped system till date required numerical search technique or shootout technique, which is the trial-error method, of-course add complexity in selecting parameter obtained at optimality conditions. The study of optimum parameter based on EMFD shows the complete closed-form solution, independent to another optimum parameter.

Result

The parameters solely depend on structural damping and mass ratio. The study reveals the multiple optimal solutions. This work investigates the various optimal parameters under harmonic excitation, also compare same with relevant researchers. To confirm its robustness under random excitation various real earthquake time history loads are applied to investigate behavior of different solutions. A demonstration of the shear building for harmonic and random excitation for various solutions provides valuable practical insights for the research endeavors.

Conclusion

Furthermore, the article presents a novel method for finding optimal parameters efficiently without requiring numerical calculations at any stages. The significance of multiple optimal solutions becomes evident when structural systems face random excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

TMD:

Tune mass damper

EMF:

Equal modal frequency

EMD:

Equal modal damping

EMFD:

Equal modal frequency and damping

FRF:

Frequency response function

SDOF:

Single degree of freedom

MDOF:

Multi degree of freedom

\({\omega }_{0}\) :

Natural frequency of system

\({\omega }_{t}\) :

Natural frequency of TMD

\(k\) :

Stiffness of system

\({k}_{t}\) :

Stiffness of TMD

\(c\) :

Damping of system

\({c}_{t}\) :

Damping of TMD

\(m\) :

Mass of system

\({m}_{t}\) :

Mass of TMD

\(\beta\) :

Structural damping ratio

\(\mu\) :

Mass ratio

\(\xi\) :

Damping ratio of TMD

\(\gamma\) :

Frequency ratio

\(\Omega\) :

Excitation frequency ratio

\(t\) :

Time

\(\omega\) :

Excitation frequency

\({H}_{x}\left(i\Omega \right)\) :

Frequency response function for displacement of system

\({H}_{{x}_{t}}\left(i\Omega \right)\) :

Frequency response function for displacement of TMD

\({H}_{{x}_{d}}\left(i\Omega \right)\) :

Frequency response function for TMD stroke of system

\({\ddot{x}}_{g}\) :

Input ground acceleration

\(x,\dot{x},\mathrm{and}\,\ddot{x}\) :

Displacement, velocity and acceleration of main mass respectively

\({x}_{t},{\dot{x}}_{t},{\text{and }} {\ddot{x}}_{t}\) :

Displacement, velocity and acceleration of TMD mass respectively

\(\overline{{\upxi }_{1}}\), \(\overline{{\upxi }_{2}}\),\(\overline{{\upxi }_{3}},\mathrm{and}\,\overline{{\upxi }_{4}}\) :

Roots of TMD damping

\(\overline{{\upgamma }_{1}}\), \(\overline{{\upgamma }_{2}}\),\(\overline{{\upgamma }_{3}},\overline{\mathrm{and}\,{\upgamma }_{4}}\) :

Roots of tuning frequency damping

\({R}_{1}\), \({R}_{2}\), \({R}_{3}\), and \({R}_{4}\) :

A close form solution pairs {\(\overline{{\xi }_{1}},\overline{{\gamma }_{1}}\)}, {\(\overline{{\xi }_{2}},\overline{{\gamma }_{1}}\)}, {\(\overline{{\xi }_{1}},\overline{{\gamma }_{2}}\)}, and {\(\overline{{\xi }_{1}},\overline{{\gamma }_{2}}\)} of optimal TMD

\(\uplambda\) :

Characteristic value

\(\phi\) :

Modal displacement vector

\({\omega }_{1 }{\text{and}}\, {\omega }_{2}\) :

Modal frequency of Mode 1 and Mode 2

\({\xi }_{1} {\text{and}}\, {\xi }_{2}\) :

Modal damping of Mode 1 and Mode 2

\(\overline{{\gamma }_{1}}\) :

Optimal tunning frequency \({\gamma }^{{\text{opt}}}\)

\(\overline{{\xi }_{1}}\) :

Optimal TMD damping \({\xi }^{{\text{opt}}}\)

References

  1. Ayorinde EO, Warburton GB (1980) Minimizing structural vibrations with absorbers. Earthquake Eng Struct Dynam 8(3):219–236. https://doi.org/10.1002/eqe.4290080303

    Article  Google Scholar 

  2. Basu D, Whittaker AS, Constantinou MC (2013) Extracting rotational components of earthquake ground motion using data recorded at multiple stations. Earthquake Eng Struct Dynam 42(3):451–468. https://doi.org/10.1002/eqe.2233

    Article  Google Scholar 

  3. Campbell GW, Wirsching PH (1973) Minimal structural response under random excitation using the vibration absorber. Earthquake Eng Struct Dynam 2(4):303–312. https://doi.org/10.1002/eqe.4290020402

    Article  Google Scholar 

  4. Chopra AK (2007) Dynamics of structures. Pearson Education India

    Google Scholar 

  5. Craig RR Jr, Kurdila AJ (2006) Fundamentals of structural dynamics. John Wiley & Sons

    Google Scholar 

  6. Den Hartog JP (1985) Mechanical vibrations. Courier Corporation

    Google Scholar 

  7. Fang H, Liu L, Zhang D, Wen M (2019) Tuned mass damper on a damped structure. Struct Control Health Monit 26(3):e2324. https://doi.org/10.1002/stc.2324

    Article  Google Scholar 

  8. Frahm H (1909) Device for damped vibrations of bodies, U.S. Patent No. 989958

  9. Hart GC, Wong KK (2000) Structural dynamics for structural engineers. John Wiley & Sons

    Google Scholar 

  10. Jacquot RG, Hoppe DL (1973) Optimal random vibration absorbers. J Eng Mech Div 99(3):612–616. https://doi.org/10.1061/JMCEA3.0001771

    Article  Google Scholar 

  11. Kamgar R, Samea P, Khatibinia M (2018) Optimizing parameters of tuned mass damper subjected to critical earthquake. Struct Design Tall Spec Build 27(7):e1460. https://doi.org/10.1002/tal.1460

    Article  Google Scholar 

  12. Li B, Dai K, Meng J, Liu K, Wang J, Tesfamariam S (2021) Simplified design procedure for nonconventional multiple tuned mass damper and experimental validation. Struct Design Tall Spec Build 30:e1818. https://doi.org/10.1002/tal.1818

    Article  Google Scholar 

  13. Makris N, Constantinou MC (1992) Spring-viscous damper systems for combined seismic and vibration isolation. Earthquake Eng Struct Dynam 21(8):649–664. https://doi.org/10.1002/eqe.4290210801

    Article  Google Scholar 

  14. Mario P & Young HK (2019) Structural dynamics: theory and computation

  15. Miranda JC (2013) A method for tuning tuned mass dampers for seismic applications. Earthquake Eng Struct Dynam 42(3):451–468. https://doi.org/10.1002/eqe.2271

    Article  Google Scholar 

  16. Moutinho C (2012) An alternative methodology for designing tuned mass dampers to reduce seismic vibrations in building structures. Earthquake Eng Struct Dynam 41(14):2059–2073. https://doi.org/10.1002/eqe.2174

    Article  Google Scholar 

  17. Patel VB, Jangid RS (2022) Closed-form derivation of optimum tuned mass damper parameter based on modal multiplicity criteria. ASPS Conf Proc Jaipur India 1(4):1041–1049. https://doi.org/10.38208/acp.v1.618

    Article  Google Scholar 

  18. Randall SE, Halsted DM III, Taylor DL (1981) Optimum vibration absorbers for linear damped systems. Trans ASME 103:903–918. https://doi.org/10.1115/1.3255005

    Article  Google Scholar 

  19. Reggio A, Angelis MD (2015) Optimal energy-based seismic design of non-conventional Tuned Mass Damper (TMD) implemented via inter-story isolation. Earthquake Eng Struct Dynam 44(10):1623–1642. https://doi.org/10.1002/eqe.2548

    Article  Google Scholar 

  20. Roberts JB, Spanos PD (2003) Random vibration and statistical linearization. John Wiley & Sons, p 1990. https://doi.org/10.1002/zamm.19910710705

    Book  Google Scholar 

  21. Sadek F, Mohraz B, Taylor AW, Chung RM (1997) A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Eng Struct Dynam 26(6):617–635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6%3c617::AID-EQE664%3e3.0.CO;2-Z

    Article  Google Scholar 

  22. Thakur VM, Jaiswal OR (2021) An alternative formulation for optimum TMD parameters based on equal Eigen value criteria. J Earthquake Eng 25(6):1131–1152. https://doi.org/10.1080/13632469.2018.1559263

    Article  Google Scholar 

  23. Thakur VM, Jaiswal OR (2023) Optimum parameters of variant tuned mass damper using equal eigenvalue criterion. Earthquake Eng Struct Dynam. https://doi.org/10.1002/eqe.3884

    Article  Google Scholar 

  24. Tsai HC, Lin GC (1993) Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems. Earthquake Eng Struct Dynam 22(11):957–973. https://doi.org/10.1002/eqe.4290221104

    Article  Google Scholar 

  25. Villaverde R (1985) Reduction seismic response with heavily-damped vibration absorbers. Earthquake Eng Struct Dynam 13(1):33–42. https://doi.org/10.1002/eqe.4290130105

    Article  Google Scholar 

  26. Wang SJ, Lee BH, Chuang WC, Chang KC (2018) Optimum dynamic characteristic control approach for building mass damper design. Earthquake Eng Struct Dynam 47(4):872–888. https://doi.org/10.1002/eqe.2995

    Article  Google Scholar 

  27. Warburton GB (1981) Optimum absorber parameters for minimizing vibration response. Earthquake Eng Struct Dynam 9:251–262. https://doi.org/10.1002/eqe.4290090306

    Article  Google Scholar 

  28. Warburton GB (1982) Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Eng Struct Dynam 10(3):381–401. https://doi.org/10.1002/eqe.4290100304

    Article  Google Scholar 

  29. Warburton GB, Ayorinde EO (1980) Optimum absorber parameters for simple systems. Earthquake Eng Struct Dynam 8(3):197–217. https://doi.org/10.1002/eqe.4290080302

    Article  Google Scholar 

  30. Wikimedia Foundation (2023) Quartic equation. https://en.wikipedia.org/wiki/Quartic_equation#Ex-ternal_links

  31. Wirsching PH, Campbell GW (1973) Minimal structural response under random excitation using the vibration absorber. Earthquake Eng Struct Dynam 2(4):303–312. https://doi.org/10.1002/eqe.4290020402

    Article  Google Scholar 

  32. Yang F, Sedaghati R, Esmailzadeh E (2015) Optimal design of distributed tuned mass dampers for passive vibration control of structures. Struct Control Health Monit 22:221–236. https://doi.org/10.1002/stc.1670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishalkumar Bhaskarbhai Patel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest to disclose regarding the publication of this work. Furthermore, the authors declare that they have no known or unknown financial obligations that could potentially influence or bias the results or interpretation of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V.B., Jangid, R.S. Optimal Parameters for Tuned Mass Dampers and Examination of Equal Modal Frequency and Damping Criteria. J. Vib. Eng. Technol. (2024). https://doi.org/10.1007/s42417-024-01351-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42417-024-01351-x

Keywords

Navigation